Skip to main content
Log in

Buckling Analysis of Steel H Column with Thermal Gradient Along the Flanges

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

This paper presents an analytical study about the axial compression buckling of H-section columns with one side of the flanges exposed to fire. The fire-induced thermal gradient along the flanges is obtained by using simplified Fourier heat conduction equation. The pre-buckling stress and bowing effect due to the non-uniform temperature distribution through the cross-section is considered. The analysis is accomplished by using the Rayleigh–Ritz method. The analytical solution is validated by finite element analysis using ANSYS. Finally, the parametric study is performed for different sections including different values of length, thickness ratio and width-to-height ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agarwal, A., Choe, L., & Varma, A. H. (2014). Fire design of steel columns: Effects of thermal gradients. Journal of Constructional Steel Research,93, 107–118.

    Article  Google Scholar 

  • Bączkiewicz, J., Malaska, M., Pajunen, S., & Heinisuo, M. (2018). Experimental and numerical study on temperature distribution of square hollow section joints. Journal of Constructional Steel Research,142, 31–43.

    Article  Google Scholar 

  • CECS200. (2006). Technical code for fire safety of steel structure in buildings. Beijing: China Plan Press (in Chinese).

  • Cheng, S. S., Yan, Q. W., Li, L. Y., & Kim, B. (2015). Thermal buckling analysis of axially loaded columns of thin-walled open section with nonuniform sectional properties. International Journal Structural Stability and Dynamics,15(6), 1–17.

    Article  MathSciNet  Google Scholar 

  • Choe, L., Varma, A. H., Agarwal, A., & Surovek, A. (2011). Fundamental behavior of steel beam-columns and columns under fire loading: experimental evaluation. Journal of Structural Engineering (ASCE),137(9), 954–966.

    Article  Google Scholar 

  • Correia, A. P. J. M., Rodrigues, J. P. C., & Real, P. V. (2014). Thermal bowing on steel columns embedded on walls under fire conditions. Fire Safety Journal,67, 53–69.

    Article  Google Scholar 

  • Culver, C. G. (1972). Steel column buckling under thermal gradients. Journal of the Structural Division,92(8), 1853–1865.

    Google Scholar 

  • Dwaikat, M., & Kodur, V. (2010). A simplified approach for evaluating plastic axial and moment capacity curves for beam–columns with non-uniform thermal gradients. Engineering Structures,32(5), 1423–1436.

    Article  Google Scholar 

  • Dwaikat, M. M. S., Kodur, V. K. R., Quiel, S. E., & Garlock, M. E. M. (2010). Experimental behavior of steel beam–columns subjected to fire-induced thermal gradients. Journal of Constructional Steel Research,67(1), 30–38.

    Article  Google Scholar 

  • EN1993-1-2. (2005). Eurocode 3: Design of steel structures. Part 1-2: General rules Structural fire design. BSI, Brussels.

  • Fang, C., Izzuddin, B. A., Elghazouli, A. Y., & Nethercot, D. A. (2011). Robustness of steel-composite building structures subject to localised fire. Fire Safety Journal,46(6), 348–363.

    Article  Google Scholar 

  • Fang, C., Izzuddin, B. A., Elghazouli, A. Y., & Nethercot, D. A. (2013). Simplified energy-based robustness assessment for steel-composite car parks under vehicle fire. Engineering Structures,49, 719–732.

    Article  Google Scholar 

  • Franssen, J. M., Talamona, D., Kruppa, J., & Cajot, L. G. (1998). Stability of steel column in case of fire: Experimental evaluation. Journal of Structural Engineering (ASCE),124(2), 158–163.

    Article  Google Scholar 

  • Gardner, L., & Baddoo, N. R. (2006). Fire testing and design of stainless steel structures. Fire Safety Journal,41(3), 185–203.

    Article  Google Scholar 

  • Gardner, L., & Ng, K. T. (2006). Temperature development in structural stainless steel sections exposed to fire. Journal of Constructional Steel Research,62(6), 532–543.

    Article  Google Scholar 

  • Han, J., Li, G. Q., & Lou, G. B. (2016). Study on equivalent thermal conductivity of fire spray coating. Journal of Building Materials,19(3), 516–521. (In Chinese).

    Google Scholar 

  • Kervalishvili, A., & Talvik, L. (2016). Modified procedure for buckling of steel columns at elevated temperatures. Journal of Constructional Steel Research,127, 108–119.

    Article  Google Scholar 

  • Laím, L., & Rodrigues, J. P. C. (2016). Numerical analysis on axially-and-rotationally restrained cold-formed steel beams subjected to fire. Thin-Walled Structures,104, 1–16.

    Article  Google Scholar 

  • Li, G. Q., Wang, P. J., & Wang, Y. C. (2010). Behaviour and design of restrained steel column in fire, Part 1: Fire test. Journal of Constructional Steel Research,66(8–9), 1135–1147.

    Google Scholar 

  • Ojeda, O. D., Maljaars, J., & Abspoel, R. (2016). Fire exposed steel columns with a thermal gradient over the cross-section. Thin-Walled Structures,98, 103–110.

    Article  Google Scholar 

  • Ossenbruggen, P. J., Aggarwal, V., & Culver, C. G. (1973). Steel column failure under thermal gradients. Journal of the Structural Division,99(4), 727–739.

    Google Scholar 

  • Ozyurt, E., & Wang, Y. C. (2016). Effects of non-uniform temperature distribution on critical member temperature of steel tubular truss. Engineering Structures,116, 95–106.

    Article  Google Scholar 

  • Tan, K. H., & Huang, Z. F. (2007). Structural response of restrained steel columns at elevated temperatures. Part 2: FE simulation with focus on experimental secondary effects. Engineering Structures,29(9), 2036–2047.

    Article  Google Scholar 

  • Tan, K. H., Toh, W. S., Huang, Z. F., & Phng, G. H. (2007). Structural responses of restrained steel columns at elevated temperatures. Part 1: Experiments. Engineering Structures,29(8), 1641–1652.

    Article  Google Scholar 

  • Wang, P. J., Li, G. Q., & Wang, Y. C. (2010a). Behaviour and design of restrained steel column in fire, Part 3: Practical design method. Journal of Constructional Steel Research,66(8–9), 1422–1430.

    Article  Google Scholar 

  • Wang, P. J., Wang, Y. C., & Li, G. Q. (2010b). Behaviour and design of restrained steel column in fire: Part 2. Parameter study. Journal of Constructional Steel Research,66(8–9), 1148–1154.

    Article  Google Scholar 

  • Wang, P. J., Wang, Y. C., & Li, G. Q. (2010c). A new design method for calculating critical temperatures of restrained steel column in fire. Fire Safety Journal,45(6–8), 349–360.

    Article  Google Scholar 

  • Yang, K. C., Lee, H. H., & Chan, A. (2006). Performance of steel H columns loaded under uniform temperature. Journal of Constructional Steel Research,62(3), 262–270.

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the financial supports by the Natural Science Foundation of Zhejiang Province (NO. LY19E080020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-ting Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Wb., Ge, Pj., Shen, Yt. et al. Buckling Analysis of Steel H Column with Thermal Gradient Along the Flanges. Int J Steel Struct 20, 677–691 (2020). https://doi.org/10.1007/s13296-020-00314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-020-00314-8

Keywords

Navigation