Advertisement

Nonlinear Buckling Analysis of Cones with Rectangular Cutouts, Numerical and Experimental Investigation

  • Mohammad Javad Kabiri Renani
  • Javad Jafari FesharakiEmail author
Article
  • 22 Downloads

Abstract

In this paper a new regression relation for nonlinear ultimate buckling resistance of the cones with rectangular cutouts is presented. For this purpose, the effective geometry parameters and material properties such as the length, thickness, large diameter and angle of the cone, the length, width and location of cutout, the modulus of elasticity, yield stress and plastic properties are considered. Then using response surface method, 288 design of experiment is considered and a regression relation for predict the ultimate buckling resistance is proposed. To validate the results, two types of real experiment are presented and the results show that there is good agreement between the experimental tests and proposed relation. Then the effects of changing the various parameters on the ultimate buckling resistance of the cone are investigated. The results show that locating the cutout near the large diameter of the cone has more influence than locating near the small diameter. Also, the location of cutout has more influence at higher thickness. Also, the yield stress has more influence on ultimate buckling resistance at higher values of thickness. In addition, decreasing the length of the cone or increasing the diameter of the cone increase the ultimate buckling resistance and increasing the angle of cone decrease the ultimate buckling resistance of the cone.

Keywords

Nonlinear buckling Conical shell Rectangular cutout Ultimate buckling resistance Response surface method 

Notes

References

  1. Arbelo, M. A., Herrmann, A., Castro, S. G. P., Khakimova, R., Zimmermann, R., & Degenhardt, R. (2015). Investigation of buckling behavior of composite shell structures with cutouts. Applied Composite Materials, 22(6), 623–636.  https://doi.org/10.1007/s10443-014-9428-x.CrossRefGoogle Scholar
  2. Atrian, A., Fesharaki, J. J., & Nourbakhsh, S. H. (2015). Thermo-electromechanical behavior of functionally graded piezoelectric hollow cylinder under non-axisymmetric loads. Applied Mathematics and Mechanics, 36(7), 939–954.  https://doi.org/10.1007/s10483-015-1959-9.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Baba, B. O. (2007). Buckling behavior of laminated composite plates. Journal of Reinforced Plastics and Composites, 26(16), 1637–1655.  https://doi.org/10.1177/0731684407079515.CrossRefGoogle Scholar
  4. Brunesi, E., & Nascimbene, R. (2018). Effects of structural openings on the buckling strength of cylindrical shells. Advances in Structural Engineering, 21(16), 2466–2482.  https://doi.org/10.1177/1369433218764625.CrossRefGoogle Scholar
  5. Dimopoulos, C. A., & Gantes, C. J. (2013). Comparison of stiffening types of the cutout in tubular wind turbine towers. Journal of Constructional Steel Research, 83, 62–74.  https://doi.org/10.1016/j.jcsr.2012.12.016.CrossRefGoogle Scholar
  6. Fesharaki, J. J., Dehkordi, H. M., Zohari, M., & Karimi, S. (2018). Best pattern for locating piezoelectric patches on a plate for maximum critical buckling loads, using particle swarm optimization algorithm. Journal of Intelligent Material Systems and Structures, 29(14), 2874–2884.  https://doi.org/10.1177/1045389x18781030.CrossRefGoogle Scholar
  7. Fesharaki, J. J., & Golabi, S. I. (2015). Optimum pattern of piezoelectric actuator placement for stress concentration reduction in a plate with a hole using particle swarm optimization algorithm. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(4), 614–628.  https://doi.org/10.1177/0954406214538617.Google Scholar
  8. Fesharaki, J. J., Golabi, S. I., (2016). A novel method to specify pattern recognition of actuators for stress reduction based on Particle swarm optimization method. Smart Structures and Systems, 17(5), 725–742.CrossRefGoogle Scholar
  9. Ghazijahani, T. G., Jiao, H., & Holloway, D. (2014). Influence of a cutout on circular steel hollow sections under cyclic loading. Journal of Constructional Steel Research, 100, 12–20.  https://doi.org/10.1016/j.jcsr.2014.04.015.CrossRefGoogle Scholar
  10. Guo, J.-Q., Fan, D. S., Lai, H. S., Liu, K. L., Guo, Z., Xu, C., et al. (2019). Novel method to increase the buckling pressure of cylindrical shells under external pressure. Measurement, 136, 438–444.  https://doi.org/10.1016/j.measurement.2018.12.013.CrossRefGoogle Scholar
  11. Han, H., Cheng, J., Taheri, F., & Pegg, N. (2006). Numerical and experimental investigations of the response of aluminum cylinders with a cutout subject to axial compression. Thin-Walled Structures, 44(2), 254–270.  https://doi.org/10.1016/j.tws.2005.11.003.CrossRefGoogle Scholar
  12. Hatami, H., & Shariati, M. (2017). Numerical and experimental investigation of SS304L cylindrical shell with cutout under uniaxial cyclic loading. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering.  https://doi.org/10.1007/s40997-017-0120-2.Google Scholar
  13. Hilburger, M. W., & Starnes, J. H., Jr. (2005). Buckling behavior of compression-loaded composite cylindrical shells with reinforced cutouts. International Journal of Non-Linear Mechanics, 40(7), 1005–1021.  https://doi.org/10.1016/j.ijnonlinmec.2005.02.001.CrossRefzbMATHGoogle Scholar
  14. Ifayefunmi, O., & Błachut, J. (2013). Instabilities in imperfect thick cones subjected to axial compression and external pressure. Marine Structures, 33, 297–307.  https://doi.org/10.1016/j.marstruc.2013.06.004.CrossRefGoogle Scholar
  15. Jafari, M., & Hoseyni, S. (2017). Optimization of infinite orthotropic plates with hypotrochoid cutout under tensile loading using genetic algorithm. Journal of Reinforced Plastics and Composites, 36(5), 360–376.  https://doi.org/10.1177/0731684416676634.CrossRefGoogle Scholar
  16. Jiao, P., Chen, Z., Xu, F., Tang, X., & Su, W. (2018). Effects of ringed stiffener on the buckling behavior of cylindrical shells with cutout under axial compression: Experimental and numerical investigation. Thin-Walled Structures, 123, 232–243.  https://doi.org/10.1016/j.tws.2017.11.013.CrossRefGoogle Scholar
  17. Kolasangiani, K., & Shariati, M. (2017). Experimental study of SS304L cylindrical shell with/without cutout under cyclic combined and uniaxial loading. International Journal of Steel Structures, 17(2), 553–563.  https://doi.org/10.1007/s13296-017-6015-7.CrossRefGoogle Scholar
  18. Lopatin, A. V., & Morozov, E. V. (2017). Buckling of composite cylindrical shells with rigid end disks under hydrostatic pressure. Composite Structures, 173, 136–143.  https://doi.org/10.1016/j.compstruct.2017.03.109.CrossRefGoogle Scholar
  19. Mao, J., & Bao, S. (2015). Comparative studies on buckling behaviors of T joint and pipe by varying geometric parameters and analysis methods. International Journal of Mechanical Sciences, 90, 113–121.  https://doi.org/10.1016/j.ijmecsci.2014.11.001.CrossRefGoogle Scholar
  20. Miladi, S., & Razzaghi, M. S. (2014). A parametric study on inelastic buckling in steel cylindrical shells with circular cutouts. International Journal of Advanced Structural Engineering (IJASE), 6(1), 47.  https://doi.org/10.1007/s40091-014-0047-4.CrossRefGoogle Scholar
  21. Narayana, A. L., Rao, K., & Kumar, R. V. (2013). FEM buckling analysis of quasi-isotropic symmetrically laminated rectangular composite plates with a square/rectangular cutout. Journal of Mechanical Science and Technology, 27(5), 1427–1435.  https://doi.org/10.1007/s12206-013-0323-4.CrossRefGoogle Scholar
  22. Narayana, A. L., Rao, K., & Kumar, R. V. (2014). Buckling analysis of rectangular composite plates with rectangular cutout subjected to linearly varying in-plane loading using fem. Sadhana, 39(3), 583–596.  https://doi.org/10.1007/s12046-014-0250-9.CrossRefGoogle Scholar
  23. Scheffe, H. (1999). The analysis of variance. Hoboken: Wiley.zbMATHGoogle Scholar
  24. Schenk, C. A., & Schuëller, G. I. (2007). Buckling analysis of cylindrical shells with cutouts including random boundary and geometric imperfections. Computer Methods in Applied Mechanics and Engineering, 196(35), 3424–3434.  https://doi.org/10.1016/j.cma.2007.03.014.CrossRefzbMATHGoogle Scholar
  25. Shahrestani, M. G., Azhari, M., & Foroughi, H. (2018). Elastic and inelastic buckling of square and skew FGM plates with cutout resting on elastic foundation using isoparametric spline finite strip method. Acta Mechanica, 229(5), 2079–2096.  https://doi.org/10.1007/s00707-017-2082-2.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Shariati, M., & Rokhi, M. M. (2010). Buckling of steel cylindrical shells with an elliptical cutout. International Journal of Steel Structures, 10(2), 193–205.  https://doi.org/10.1007/bf03215830.CrossRefGoogle Scholar
  27. Topal, U., & Uzman, Ü. (2008). Maximization of buckling load of laminated composite plates with central circular holes using MFD method. Structural and Multidisciplinary Optimization, 35(2), 131–139.  https://doi.org/10.1007/s00158-007-0119-1.CrossRefGoogle Scholar
  28. Torabi, H., & Shariati, M. (2014). Buckling analysis of steel semi-spherical shells with square cutout under axial compression. Strength of Materials, 46(4), 531–542.  https://doi.org/10.1007/s11223-014-9579-x.CrossRefGoogle Scholar
  29. Wang, B., Zhu, S., Hao, P., Bi, X., Du, K., Chen, B., et al. (2018). Buckling of quasi-perfect cylindrical shell under axial compression: A combined experimental and numerical investigation. International Journal of Solids and Structures, 130–131, 232–247.  https://doi.org/10.1016/j.ijsolstr.2017.09.029.CrossRefGoogle Scholar
  30. Yazici, M., Ozcan, R., Ulku, S., & Okur, I. (2003). Buckling of composite plates with U-shaped cutouts. Journal of Composite Materials, 37(24), 2179–2195.  https://doi.org/10.1177/002199803038109.CrossRefGoogle Scholar

Copyright information

© Korean Society of Steel Construction 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Najafabad BranchIslamic Azad UniversityNajafabadIran

Personalised recommendations