Skip to main content
Log in

A Study of Different Microstructural Effects on the Strain Hardening Behavior of Hadfield Steel

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

The effects of the initial texture, velocity gradient, strain increment and type of interaction tensor on the strain hardening response of Hadfield steel were investigated. To observe their influences on mechanical response, crystal plasticity computations were carried out with the aid of the Visco-Plastic Self-Consistent (VPSC) algorithm. Specifically, uniaxial deformation response of Hadfield steel was modeled based on the experimental deformation response at a strain rate of 1×10−1 s−1 and corresponding Voce hardening parameters were calculated. The same Voce hardening parameters were utilized with different boundary conditions in the VPSC simulations to identify the roles of the aforementioned microstructural properties. The current results demonstrate the importance of these microstructural properties for reliable predictions of the strain hardening response of Hadfield steel and constitute an important guideline for the proper selection of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, P.H., Olson, G.B., and Owen, W.S. (1986). “Strain Hardening of Hadfield Manganese Steel.” Metallurgical Transactions A, 17, pp. 1725–1737.

    Article  Google Scholar 

  • Allain, S., Chateau, J.-P., Bouaziz, O., Migot, S., and Guelton, N. (2004). “Correlations between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys.” Materials Science and Engineering: A, 387-389, pp. 158–162.

    Article  Google Scholar 

  • Anjabin, N., Karimi Taheri, A., and Kim, H.S. (2013). “Simulation and Experimental Analyses of Dynamic Strain Aging of a Supersaturated Age Hardenable Aluminum Alloy.” Materials Science and Engineering: A, 585, pp. 165–173.

    Article  Google Scholar 

  • Bal, B., Gumus, B., and Canadinc, D. (2016). “Incorporation of Dynamic Strain Aging into a Visco-Plastic Self-Consistent Model for Predicting the Negative Strain Rate Sensitivity of Hadfield Steel.” Journal of Engineering Materials and Technology, 138, pp. 1–8.

    Article  Google Scholar 

  • Bal, B., Gumus, B., Gerstein, G., Canadinc, D., and Maier, H.J. (2015). “On the Micro-Deformation Mechanisms Active in High-Manganese Austenitic Steels under Impact Loading.” Materials Science and Engineering A, 632, pp. 29–34.

    Article  Google Scholar 

  • Biyikli, E., Canadinc, D., Maier, H.J., and Niendorf, T., Top, S. (2010). “Three-Dimensional Modeling of the Grain Boundary Misorientation Angle Distribution Based on Two-Dimensional Experimental Texture Measurements.” Materials Science and Engineering A, 527, pp. 5604–5612.

    Article  Google Scholar 

  • Bouaziz, O., Allain, S., Scott, C.P., Cugy, P., and Barbier, D. (2011). “High Manganese Austenitic Twinning Induced Plasticity Steels: A Review of the Microstructure Properties Relationships.” Current Opinion in Solid State and Materials Science, 15, pp. 141–168.

    Article  Google Scholar 

  • Canadinc, D. (2005). PhD Thesis. University of Illinois at Urbana-Champaign, USA.

    Google Scholar 

  • Canadinc, D., Biyikli, E., Niendorf, T., and Maier, H.J. (2011). “Experimental and Numerical Investigation of the Role of Grain Boundary Misorientation Angle on the Dislocation-Grain Boundary Interactions.” Advanced Engineering Materials, 13, pp. 281–287.

    Article  Google Scholar 

  • Canadinc, D., Efstathiou, C., and Sehitoglu, H. (2008). “On the Negative Strain Rate Sensitivity of Hadfield Steel.”, Scripta Materialia 59, pp. 1103–1106.

    Article  Google Scholar 

  • Canadinc, D., Karaman, I., Sehitoglu, H., Chumlyakov, Y.I., and Maier, H.J. (2003). “The Role of Nitrogen on the Deformation Response of Hadfield Steel Single Crystals.” Metallurgical and Materials Transactions A, 34, pp. 1821–1831.

    Article  Google Scholar 

  • Canadinc, D., Sehitoglu, H., and Maier, H.J. (2007a). “The Role of Dense Dislocation Walls on the Deformation Response of Aluminum Alloyed Hadfield Steel Polycrystals.” Materials Science and Engineering: A, 454-455, pp. 662–666.

    Article  Google Scholar 

  • Canadinc, D., Sehitoglu, H., Maier, H.J., and Chumlyakov, Y.I. (2005). “Strain Hardening Behavior of Aluminum Alloyed Hadfield Steel Single Crystals.” Acta Materialia, 53, pp. 1831–1842.

    Article  Google Scholar 

  • Canadinc, D., Sehitoglu, H., Maier, H.J., Niklasch, D., and Chumlyakov, Y.I. (2007b). “Orientation Evolution in Hadfield Steel Single Crystals under Combined Slip and Twinning.” International Journal of Solids and Structures, 44, pp. 34–50.

    Article  MATH  Google Scholar 

  • Chmelík, F., Klose, F.B., Dierke, H., Šachl, J., and Neuhäuser, H., Lukác, P. (2007). “Investigating the Portevin-Le Châtelier Effect in Strain Rate and Stress Rate Controlled Tests by the Acoustic Emission and Laser Extensometry Techniques.” Materials Science and Engineering A, 462, pp. 53–60.

    Article  Google Scholar 

  • Curtze, S., and Kuokkala, V. (2010). “Dependence of Tensile Deformation Behavior of TWIP Steels on Stacking Fault Energy, Temperature and Strain Rate.” Acta Materialia, 58, pp. 5129–5141.

    Article  Google Scholar 

  • Dastur, Y.N., and Leslie, W.C. (1981). “Mechanism of Work Hardening in Hadfield Manganese Steel.” Metallurgical Transactions A, 12, pp. 749–759.

    Article  Google Scholar 

  • Efstathiou, C., and Sehitoglu, H. (2010). “Strain Hardening and Heterogeneous Deformation during Twinning in Hadfield Steel.” Acta Materialia, 58, pp. 1479–1488.

    Article  Google Scholar 

  • Feng, X.Y., Zhang, F.C., Yang, Z.N., and Zhang, M. (2013). “Wear Behaviour of Nanocrystallised Hadfield Steel.” Wear, 305, pp. 299–304.

    Article  Google Scholar 

  • Fressengeas, C., Beaudoin, A.J., Lebyodkin, M., Kubin, L.P., and Estrin, Y. (2005). “Dynamic Strain Aging: A Coupled dislocation-Solute Dynamic Model.” Materials Science and Engineering: A, 400-401, pp. 226–230.

    Article  Google Scholar 

  • Frommeyer, G., Brüx, U., and Neumann, P. (2003). “Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes.” ISIJ International, 43, pp. 438–446.

    Article  Google Scholar 

  • Grassel, O., Kruger, L., Frommeyer, G., and Meyer, L.W. (2000). “High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Development-Properties-Application.” International Journal of Plasticity, 16, pp. 1391–1409.

    Article  MATH  Google Scholar 

  • Gumus, B., Bal, B., Gerstein, G., Canadinc, D., and Maier, H.J. (2016). “Twinning Activity in High-Manganese Austenitic Steels under High Velocity Loading.” Materials Science and Technology, 32, pp. 463–465.

    Google Scholar 

  • Gumus, B., Bal, B., Gerstein, G., Canadinc, D., Maier, H.J., Guner, F., and Elmadagli, M. (2015). “Twinning Activity in High-Manganese Austenitic Steels under High Velocity Loading.” Materials Science and Engineering A, 648, pp. 104–112.

    Article  Google Scholar 

  • Hirth, JP., Lothe, J. (1968). “Theory of Dislocations.” McGraw-Hill, New York: 247.

    Google Scholar 

  • Hutchinson, B., and Ridley, N. (2006). “On Dislocation Accumulation and Work Hardening in Hadfield Steel.” Scripta Materialia, 55, pp. 299–302.

    Article  Google Scholar 

  • Hutchinson, J.W. (1976). “Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials.” Proceedings of the Physical Society of London A, 348, pp. 101–121.

    Article  MATH  Google Scholar 

  • Kang, J., Zhang, F.C., Long, X.Y., and Lv, B. (2014). “Cyclic Deformation and Fatigue Behaviors of Hadfield Manganese Steel.” Materials Science and Engineering: A, 591, pp. 59–68.

    Article  Google Scholar 

  • Karaman, I., Sehitoglu, H., Beaudoin, A.J., Chumlyakov, Y.I., Maier, H.J., and Tome, C.N. (2000a). “Modeling the Deformation Behavior of Hadfield Steel Single and Polycrystals due to Twinning and Slip.” Acta Materialia, 48, pp. 2031–2047.

    Article  Google Scholar 

  • Karaman, I., Sehitoglu, H., Chumlyakov, Y., Maier, H., and Kireeva, I.V. (2001a). “Extrinsic Stacking Faults and Twinning in Hadfield Manganese Steel Single Crystals.” Scripta Materialia, 44, pp. 337–343.

    Article  Google Scholar 

  • Karaman, I., Sehitoglu, H., Chumlyakov, Y., and Maier, H.J., Kireeva, I.V. (2001b). “The Effect of Twinning and Slip on the Bauschinger Effect of Hadfield Steel Single Crystals.” Metallurgical and Materials Transactions A, 32, pp. 695–706.

    Article  Google Scholar 

  • Karaman, I., Sehitoglu, H., Gall, K., Chumlyakov, Y.I., and Maier, H.J. (2000b). “Deformation of Single Crystal Hadfield Steel by Twinning and Slip.” Acta Materialia, 48, pp. 1345–1359.

    Article  Google Scholar 

  • Kibey, S., Liu, J.B., Johnson, D.D., and Sehitoglu, H. (2007). “Predicting Twinning Stress in Fcc Metals: Linking Twin-Energy Pathways to Twin Nucleation.” Acta Materialia, 55, pp. 6843–6851.

    Article  Google Scholar 

  • Kocks, U.F., Tomé, C.N., and Wenk, H.R. (1998). “Texture and Anisotropy.” Cambridge University Press: New York.

    Google Scholar 

  • Koester, A., Ma, A., and Hartmaier, A. (2012). “Atomistically Informed Crystal Plasticity Model for Body-Centered Cubic Iron.” Acta Materialia, 60, pp. 3894–3901. doi:10.1016/j.actamat.2012.03.053

    Article  Google Scholar 

  • Koyama, M., Sawaguchi, T., Lee, T., Lee, C.S., and Tsuzaki, K. (2011). “Work Hardening Associated with ε-Martensitic Transformation, Deformation Twinning and Dynamic Strain Aging in Fe-17Mn-0.6C and Fe-17Mn-0.8C TWIP Steels.” Materials Science and Engineering A, 528, pp. 7310–7316.

    Article  Google Scholar 

  • Koyama, M., Sawaguchi, T., and Tsuzaki, K. (2013). “TWIP Effect and Plastic Instability Condition in an Fe-Mn-C Austenitic Steel.” ISIJ International, 53, pp. 323–329.

    Article  Google Scholar 

  • Lebensohn, R.A., and Tomé, C.N. (1993). “A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys.” Acta Metallurgica et Materialia, 41, pp. 2611.

    Article  Google Scholar 

  • Lee, S.-J., Kim, J., Kane, S.N., and Cooman, B.C. De (2011). “On the Origin of Dynamic Strain Aging in Twinning-Induced Plasticity Steels.” Acta Materialia, 59, pp. 6809–6819.

    Article  Google Scholar 

  • Li, Y., Zhu, L., Liu, Y., Wei, Y., Wu, Y., Tang, D., and Mi, Z. (2013). “On the Strain Hardening and Texture Evolution in High Manganese Steels: Experiments and Numerical Investigation.” Journal of the Mechanics and Physics of Solids, 61, pp. 2588–2604.

    Article  Google Scholar 

  • Luo, J., Li, M., Li, X., and Shi, Y. (2010). “Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables.” Mechanics of Materials, 42, pp. 157–165.

    Article  Google Scholar 

  • Mirzajanzadeh, M., and Canadinc, D. (2016). “A Microstructure-Sensitive Model for Simulating the Impact Response of an High-Manganese Austenitic Steel.” Journal of Engineering Materials and Technology, In Press

    Google Scholar 

  • Onal, O., Bal, B., Toker, S.M., Mirzajanzadeh, M., Canadinc, D., and Maier, H.J. (2014). “Microstructure-Based Modeling of the Impact Response of a Biomedical Niobium-Zirconium Alloy.” Journal of Materials Research, 29, pp. 1123–1134.

    Article  Google Scholar 

  • Onal, O., Bal, B., Canadinc, D., and Akdari, E. (2015). “Experimental and Numerical Evaluation of Thickness Reduction in Steel Plate Heat Exchangers.” Journal of Engineering Materials and Technology, 137, pp. 041001–041008

    Article  Google Scholar 

  • Onal, O., Ozmenci, C., and Canadinc, D. (2014). “Multi-Scale Modeling of the Impact Response of a Strain-Rate Sensitive High-Manganese Austenitic Steel.” Frontiers in Materials, 1, pp. 1–12.

    Article  Google Scholar 

  • Owen, W.S., and Grujicic, M. (1999). “Strain Aging of Austenitic Hadfield Manganese Steel.” Acta Materialia, 47, pp. 111–126.

    Article  Google Scholar 

  • Patra, A., Zhu, T., and McDowell, D.L. (2014). “Constitutive Equations for Modeling Non-Schmid Effects in Single Crystal Bcc-Fe at Low and Ambient Temperatures.” International Journal of Plasticity, 59, pp. 1–14.

    Article  Google Scholar 

  • Raghavan, K.S., Sastri, A.S., and Marcinkowski, M.J. (1969). “Nature of the Work-Hardening Behavior in Hadfield’s Manganese Steel.” Transactions of the Metallurgical Society of AIME., 245, pp. 1569–1575.

    Google Scholar 

  • Renard, K., Ryelandt, S., and Jacques, P.J. (2010). “Characterisation of the Portevin-Le Châtelier Effect Affecting an Austenitic TWIP Steel Based on Digital Image Correlation.” Materials Science and Engineering: A, 527, pp. 2969–2977.

    Article  Google Scholar 

  • Shen, Y.F., Qiu, C.H., Wang, L., Sun, X., Zhao, X.M., and Zuo, L. (2013). “Effects of Cold Rolling on Microstructure and Mechanical Properties of Fe-30Mn-3Si-4Al-0.093C TWIP Steel.” Materials Science and Engineering: A, 561, pp. 329–337.

    Article  Google Scholar 

  • Shtremel, M.A., and Kovalenko, I.A. (1987). “On the Work Hardening Mechanism of Hadfield Steel.” The Physics of Metals and Metallography, 63, pp. 158–166.

    Google Scholar 

  • Stoller, R.E., and Zinkle, S.J. (2000). “On the Relationship between Uniaxial Yield Strength and Resolved Shear Stress in Polycrystalline Materials.” Journal of Nuclear Materials, 283-287, pp. 349–352.

    Article  Google Scholar 

  • Tome, C.N. (1999). “Self-Consistent Polycrystal Models: A Directional Compliance Criterion to Describe Grain Interactions.” Modelling And Simulation In Materials Science And Engineering, 7, pp. 723–738.

    Article  Google Scholar 

  • Wang, C., Li, Z., Xu, Y., and Han, E. (2007). “Acoustic Emission Inspection of Portevin-Le Chatelier Effect and Deformation Mechanisms of Two Mg-Li-Al Alloys.” Journal of Materials Science, 42, pp. 3573–3579.

    Article  Google Scholar 

  • Wen, Y.H., Peng, H.B., Si, H.T., Xiong, R.L., and Raabe, D. (2014). “A Novel High Manganese Austenitic Steel with Higher Work Hardening Capacity and Much Lower Impact Deformation than Hadfield Manganese Steel.” Materials and Design, 55, pp. 798–804.

    Article  Google Scholar 

  • Yilmaz, A. (2011). “The Portevin-Le Chatelier Effect: A Review of Experimental Findings.” Science and Technology of Advanced Materials, 12, pp. 063001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Bal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bal, B. A Study of Different Microstructural Effects on the Strain Hardening Behavior of Hadfield Steel. Int J Steel Struct 18, 13–23 (2018). https://doi.org/10.1007/s13296-018-0302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0302-9

Keywords

Navigation