Skip to main content
Log in

Axisymmetric Buckling of Cylindrical Shells with Nonuniform Thickness and Initial Imperfection

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

In this article, the axial buckling load of an axisymmetric cylindrical shell with nonuniform thickness is determined analytically with the initial imperfection by using the first order shear deformation theory. The imperfection is considered as an axisymmetric continuous radial displacement. The strain–displacement relations are defined using the nonlinear von-Karman formulas. The constitutive equations obey Hooke’s law. The equilibrium equations are nonlinear ordinary differential equations with variable coefficients. The stability equations are determined from them. The stability equations are a system of coupled linear ordinary differential equations with variable coefficients. The results are compared with the finite element method and some other references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alashti, R. A., & Ahmadi, S. A. (2014). Buckling of imperfect thick cylindrical shells and curved panels with different boundary conditions under external pressure. Journal of Theoretical and Applied Mechanics, 52(1), 25–36.

    Google Scholar 

  • Amabili, M. (2008). Nonlinear vibrations and stability of shells and plates. New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Arbocz, J., & Babcock Charles, D., Jr. (1969). The effect of general imperfection on the buckling of cylindrical shells. Journal of Applied Mechanics-Transactions of ASME, 36, 28–38.

    Article  MATH  Google Scholar 

  • Brush, D. O., & Almroth, B. O. (1975). Buckling of bars, plates and shells. New York: McGraw-Hill.

    Book  MATH  Google Scholar 

  • Dung, D. V., & Hoa, L. K. (2012). Solving nonlinear stability problem of imperfect functionally graded circular cylindrical shells under axial compression by Galerkin’s method. Vietnam Journal of Mechanics, 34(3), 139–156.

    Article  Google Scholar 

  • Eglitis, E., Kalnins, K., & Ozolins, O. (2009). Experimental and numerical study on buckling of axially compressed composite cylinders. Scientific Journal of RTU, 10, 33–49.

    Google Scholar 

  • Gotsulyak, E. A., Luk’yanchenko, O. A., & Shakh, V. V. (2009). On stability of cylindrical shells of variable thickness with initial imperfections. International Applied Mechanics, 45(4), 433–436.

    Article  MATH  Google Scholar 

  • Gristchak, V. Z., & Golovan, O. A. (2003). Hybrid asymptotic method for the effect of local thickness defects and initial imperfections on the buckling of cylindrical shells. Journal of Theoretical and Applied Mechanics, 41(3), 509–520.

    Google Scholar 

  • Hui, D., & Du, I. H. Y. (1987). Initial postbuckling behavior of imperfect, antisymmetric cross-ply cylindrical shells under torsion. Applied Mechanics, 54, 174–180.

    Article  MATH  Google Scholar 

  • Kim, S. E., & Kim, C. S. (2002). Buckling strength of the cylindrical shell and tank subjected to axially compressive loads. Thin-Walled Structures, 40, 329–353.

    Article  Google Scholar 

  • Mahboubi Nasrekani, F., & Eipakchi, H. R. (2012). Elastic buckling of axisymmetric cylindrical shells under axial load using first order shear deformation theory. ZAMM-Journal of Applied Mathematics and Mechanics, 92(11–12), 937–944.

    Article  MathSciNet  MATH  Google Scholar 

  • Nayfeh, A. H. (1981). Introduction to perturbation techniques. New York: Wiley.

    MATH  Google Scholar 

  • Papadopoulos, V., & Papadrakakis, M. (2005). The effect of material and thickness variability on the buckling load of shells with random initial imperfections. Computer Methods in Applied Mechanics and Engineering, 194, 1405–1426.

    Article  MATH  Google Scholar 

  • Prabu, B., Raviprakash, A. V., & Rathinam, N. (2010). Parametric study on buckling behavior of thin stainless steel cylindrical shells for circular dent dimensional variations under uniform axial compression. International Journal of Engineering, Science and Technology, 2(40), 134–149.

    Google Scholar 

  • Shahrjerdi, A., & Bahramibabamiri, B. (2015). The effect of different geometrical imperfection of buckling of composite cylindrical shells subjected to axial loading. International Journal of Mechanical and Materials Engineering, 10(1), 6.

    Article  Google Scholar 

  • Shahzad, K., Ahmed, S., & Ullah, H. (2007). Effect of geometric imperfection on buckling strength of cylindrical shells. Failure of Engineering Materials and Structures, 48, 1034–1043.

    Google Scholar 

  • Sobey, A. J. (1964). The buckling of an axially loaded circular cylinder with initial imperfections (p. 64016). No: Royal Aeronautical Establishment Technical Report.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Mahboubi Nasrekani.

Appendix

Appendix

$$\begin{aligned} & \, A_{0,11} = R^{*} h^{*} { ; }A_{0,13} = h^{*} Z_{2} \theta_{1} { ; }A_{0,14} = R^{*} h^{*} \theta_{1} \left( {w_{10}^{*} + 1} \right){ ; }A_{0,21} = \frac{{\varepsilon h^{*} Z_{2} }}{4}\frac{{dh^{*} }}{{dx^{*} }}{ ; }A_{0,22} = - \, \frac{{5R^{*} \theta_{2} }}{6}{ ;} \\ \, & A_{0,24} = \frac{{\varepsilon h^{*2} }}{12}\left( {\frac{{3Z_{2} \theta_{1} }}{{h^{*} }}\frac{{dh^{*} }}{{dx^{*} }}\left( {w_{10}^{*} + 2} \right) - \frac{{10R^{*} \theta_{2} }}{{h^{*2} }}\frac{{dw_{00}^{*} }}{{dx^{*} }} + Z_{2} \left( {\theta_{1} - \frac{{5\theta_{2} }}{6}} \right)\frac{{dw_{10}^{*} }}{{dx^{*} }} + \frac{{5R^{*} \theta_{2} }}{6}} \right){ ; }A_{0,31} = - \frac{{\varepsilon^{2} R^{*} h^{*3} }}{12}\frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }} + R^{*} h^{*} Z_{2} \theta_{1} { ;} \\ \, & A_{0,32} = - \frac{{5\varepsilon R^{*} h^{*} \theta_{2} }}{6}\left( {\frac{1}{{h^{*} }}\frac{d}{{dx^{*} }}\left( {R^{*} h^{*} } \right)\left( {w_{10}^{*} + 1} \right) + 2R^{*} \frac{{dw_{10}^{*} }}{{dx^{*} }}} \right){ ; }A_{0,33} = Z_{2}^{2} h^{*} , \\ & A_{0,34} = - \frac{{\varepsilon^{2} R^{*} h^{*3} }}{12}\left( \begin{aligned} \left( {\frac{{10R^{*} \theta_{2} }}{{h^{*2} }}\frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }} + Z_{2} \theta_{1} \frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }}} \right)\left( {w_{10}^{*} + 2} \right) + \frac{{30R^{*} \theta_{2} }}{{h^{*2} }}\left( {\frac{{dw_{00}^{*} }}{{dx^{*} }}\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right) + \left( {\frac{{5\theta_{2} Z_{2} }}{{2h^{*} }}\frac{{dh^{*} }}{{dx^{*} }}\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)\left( {2w_{10}^{*} + 1} \right) + \hfill \\ \frac{{5Z_{2} \theta_{2} }}{2}\left( {\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)^{2} + \left( {\frac{20}{{h^{*3} }}\frac{d}{{dx^{*} }}(R^{*} h^{*} )\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{5Z_{2} }}{3}\frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }}} \right)\left( {w_{10}^{*} + 1} \right)\theta_{2} + \frac{{10\theta_{2} }}{{R^{*} h^{*3} }}\left( {\frac{d}{{x^{*} }}\left( {R^{*} h^{*} } \right)\left( {1 + 2w_{10}^{*} } \right) + 3R^{*} h^{*} \frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} \hfill \\ \end{aligned} \right) \\ & \;\;\;\;\;\;\;\;\;\;\; - \frac{{5\varepsilon R^{*} \theta_{2} }}{6}\frac{d}{{dx^{*} }}\left( {R^{*} h^{*} u_{10}^{*} } \right) + R^{*} h^{*} Z_{2} \theta_{1} \left( {w_{10}^{*} + 1} \right){ ; }A_{0,41} = - \varepsilon^{2} \left( {\frac{{Z_{2} h^{*2} }}{12}\left( {\frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }} + \frac{{d^{2} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*2} }}} \right) + \frac{1}{{12h^{*} }}\frac{d}{{dx^{*} }}\left( {R^{*} h^{*3} \frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)} \right) + R^{*} \theta_{1} \left( {1 + w_{10}^{*} } \right) \\ & A_{0,42} = \frac{{5\varepsilon h^{*} Z_{2} \theta_{2} }}{24}\frac{{dh^{*} }}{{dx^{*} }}\left( {w_{10}^{*} + 1} \right){ ; }A_{0,43} = Z_{2} \theta_{1} \left( { - \frac{{\varepsilon^{2} }}{{12h^{*} }}\frac{d}{{dx^{*} }}\left( {h^{*3} \frac{{dw_{10}^{*} }}{{dx^{*} }}} \right) + \left( {w_{10}^{*} + 1} \right)} \right) \\ \end{aligned}$$
$$\begin{aligned} A_{0,44} = & - \varepsilon^{2} \left( \begin{aligned} \frac{{h^{*2} Z_{2} \theta_{1} }}{12}\frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }}(2 + w_{10}^{*} ) + \frac{{h^{*2} Z_{2} (5\theta_{2} + 6\theta_{1} )}}{72}\frac{{dw_{10}^{*} }}{{dx^{*} }}\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{R^{*} h^{*2} (5\theta_{2} + 3\theta_{1} )}}{72}\left( {\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)^{2} + \frac{{R^{*} \theta_{1} }}{2}\left( {\frac{{dw_{00}^{*} }}{{dx^{*} }}} \right)^{2} + \frac{{5h^{*} Z_{2} \theta_{2} }}{12}\frac{{dh^{*} }}{{dx^{*} }}\frac{{dw_{00}^{*} }}{{dx^{*} }} \hfill \\ + \left( {w_{10}^{*} + 1} \right)\left( {(5\theta_{2} + 3\theta_{1} )\left( {\frac{{h^{*2} }}{36}\frac{{dR^{*} }}{{dx^{*} }} + \frac{{R^{*} h^{*} }}{12}\frac{{dh^{*} }}{{dx^{*} }}\frac{{dw_{10}^{*} }}{{dx^{*} }} + \frac{{R^{*} h^{*2} }}{12}} \right)\frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }} + \frac{{5h^{*2} Z_{2} \theta_{2} }}{36}\frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }}} \right) + \frac{{5R^{*} h^{*} \theta_{2} }}{6}\left( {1 + 2w_{10}^{*} } \right)\frac{{d^{2} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*2} }} \hfill \\ + \frac{{h^{*3} Z_{2} }}{720}\left( {(60\theta_{1} + 100\theta_{2} )w_{10}^{*} + (120\theta_{1} + 50\theta_{2} )} \right)\frac{{d^{2} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*2} }} + \frac{{h^{*} Z_{2} }}{360}\left( {h^{*2} \frac{{dw_{10}^{*} }}{{dx^{*} }}\left( {30\theta_{1} + 25\theta_{2} } \right)} \right) + h^{*} \frac{{dh^{*} }}{{dx^{*} }}\theta_{2} \left( {150w_{10}^{*} + 75} \right) - \frac{{360R^{*} \theta_{1} }}{{Z_{2} }}\frac{{dw_{00}^{*} }}{{dx^{*} }})\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} \hfill \\ \end{aligned} \right) \\ & + \varepsilon \left( { - \frac{{5h^{*} Z_{2} \theta_{2} }}{24}\frac{{dh^{*} }}{{dx^{*} }}u_{10}^{*} + \frac{{h^{*2} Z_{2} (5\theta_{2} + 6\theta_{1} )}}{72}\frac{{du_{10}^{*} }}{{dx^{*} }}} \right) + Z_{2} \theta_{1} w_{00}^{*} + \frac{3}{2}R^{*} w_{10}^{*} \left( {w_{10}^{*} + 2} \right) + R^{*} + R^{*} \theta_{1} V_{00}^{*} \\ \end{aligned}$$
$$\begin{aligned} & \, A_{1,12} = \frac{{\varepsilon h^{*3} Z_{2} }}{12}{ ; }A_{1,13} = \frac{{\varepsilon^{2} h^{*3} Z_{2} }}{12}\frac{{dw_{10}^{*} }}{{dx^{*} }} + \varepsilon^{2} R^{*} h^{*} \left( {\frac{{dw_{00}^{*} }}{{dx^{*} }}{ + }\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right){ + ; }A_{1,14} = \frac{{\varepsilon^{2} h^{*3} }}{12}\left( {R^{*} \frac{{dw_{10}^{*} }}{{dx^{*} }} + Z_{2} \left( {\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right)} \right){ ; }A_{1,21} = \frac{{\varepsilon h^{*2} Z_{2} }}{12} \, \\ & A_{1,22} = \frac{{\varepsilon^{2} h^{*2} }}{12}\left( {\frac{{dR^{*} }}{{dx^{*} }} + \frac{{3R^{*} }}{{h^{*} }}\frac{{dh^{*} }}{{dx^{*} }}} \right){ ; }A_{1,23} = \frac{{\varepsilon^{3} h^{*2} }}{12}\left( {R^{*} \frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }} + \frac{{Z_{2} }}{{h^{*3} }}\frac{d}{{dx^{*} }}\left( {h^{*3} \frac{{dw_{00}^{*} }}{{dx^{*} }}} \right) + \frac{1}{{h^{*3} }}\frac{d}{{dx^{*} }}(R^{*} h^{*3} )\frac{{dw_{10}^{*} }}{{dx^{*} }} - \frac{{10R^{*} \theta_{2} }}{{\varepsilon^{2} h^{*2} }}(w_{10}^{*} + 1) + h^{*} Z_{2} \frac{{d^{2} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*2} }} + 3Z_{2} \frac{{dh^{*} }}{{dx^{*} }}\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right) \\ & A_{1,24} = \frac{{\varepsilon^{3} h^{*2} }}{12}\left( {R^{*} \left( {\frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }} + \frac{{d^{2} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*2} }}} \right) + \frac{{3Z_{2} }}{{20h^{*3} }}\frac{d}{{dx^{*} }}\left( {h^{*5} \frac{{dw_{10}^{*} }}{{dx^{*} }}} \right) + \frac{1}{{h^{*3} }}\frac{d}{{dx^{*} }}\left( {R^{*} h^{*3} } \right)\frac{{dw_{00}^{*} }}{{dx^{*} }} + \left( {3R^{*} \frac{{dh^{*} }}{{dx^{*} }} + \frac{{dR^{*} }}{{dx^{*} }}} \right)\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right) + \frac{{h^{*2} \varepsilon }}{12}\left( {Z_{2} \theta_{1} \left( {2 + w_{10}^{*} } \right) - \frac{{5Z_{2} \theta_{2} }}{6}\left( {w_{10}^{*} + 1} \right)} \right) \, \\ & A_{1,32} = - \frac{{\varepsilon^{3} R^{*2} h^{*3} }}{12}\frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }} - \frac{{5\varepsilon R^{*2} h^{*} \theta_{2} }}{6}(w_{10}^{*} + 1) \, \\ & A_{1,33} = - \frac{{\varepsilon^{4} R^{*} h^{*3} }}{12}\left( {\left( {R^{*} \frac{{dw_{10}^{*} }}{{dx^{*} }} + \frac{{Z_{2} }}{2}\frac{{dw_{00}^{*} }}{{dx^{*} }} + Z_{2} \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right)\frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }}} \right) - \frac{{\varepsilon^{2} R^{*} h^{*3} }}{12}\left( { - \frac{{12Z_{2} \theta_{1} }}{{h^{*2} }}\left( {\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right) + \frac{{10\theta_{2} }}{{h^{*3} }}\frac{d}{{dx^{*} }}\left( {R^{*} h^{*} } \right)\left( {1 + w_{10}^{*} } \right)^{2} + \frac{{30R^{*} \theta_{2} }}{{h^{*2} }}\left( {\frac{{dw_{10}^{*} }}{{dx^{*} }}(1 + w_{10}^{*} } \right))} \right) \\ & A_{1,34} = - \frac{{R^{*} h^{*3} }}{12}\left( {\varepsilon^{4} \left( {R^{*} + \frac{{3Z_{2} h^{*2} }}{20}\frac{{dw_{10}^{*} }}{{dx^{*} }} + \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right)\left( {\frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }}} \right) + \varepsilon^{2} \left( \begin{aligned} - \frac{{30R^{*} \theta_{2} }}{{h^{*2} }}\frac{{dw_{00}^{*} }}{{dx^{*} }}\left( {1 + w_{10}^{*} } \right) - \frac{{5Z_{2} \theta_{2} }}{{2h^{*} }}\frac{{dh^{*} }}{{dx^{*} }}\left( {1 + w_{10}^{*} } \right)^{2} \hfill \\ + Z_{2} \left( {\theta_{1} - \frac{{5\theta_{2} }}{2}\left( {w_{10}^{*} + 2} \right)} \right)\frac{{dw_{10}^{*} }}{{dx^{*} }} - \frac{{5R^{*} h^{*} \theta_{2} }}{6}\left( {3w_{10}^{*} + 1} \right)\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} \hfill \\ \end{aligned} \right)} \right) + \frac{{5\varepsilon R^{*2} h^{*} \theta_{2} }}{3}u_{10}^{*} \, \\ & A_{1,41} = - \frac{{\varepsilon^{2} R^{*} h^{*2} }}{12}\frac{{dw_{10}^{*} }}{{dx^{*} }}{ ; }A_{1,42} = - \varepsilon^{3} \left( {\frac{{R^{*} h^{*2} }}{12}\frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }} + \frac{{Z_{2} }}{{80h^{*} }}\frac{d}{{dx^{*} }}\left( {h^{*5} \frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)} \right) - \varepsilon h^{*2} Z_{2} \left( {\frac{{\theta_{1} }}{12}\left( {w_{10}^{*} + 2} \right) + \frac{{5\theta_{2} }}{72}\left( {1 + w_{10}^{*} } \right)} \right) \\ \end{aligned}$$
$$A_{1,43} = - \varepsilon^{4} \left( \begin{aligned} \frac{{R^{*} h^{*} }}{6}\frac{{dw_{10}^{*} }}{{dx^{*} }}\left( {h^{*} \frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }} + \frac{3}{2}\frac{{dw_{00}^{*} }}{{dx^{*} }}} \right) + \frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }}\left( {\frac{{Z_{2} h^{*4} }}{40}\frac{{dw_{10}^{*} }}{{dx^{*} }} + \frac{{R^{*} h^{*2} }}{12}\frac{{dw_{00}^{*} }}{{dx^{*} }}} \right) + \frac{{h^{*3} Z_{2} }}{16}\frac{{dh^{*} }}{{dx^{*} }}\left( {\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)^{2} + 360R^{*} \theta_{1} w_{10}^{*} + 1)\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} \hfill \\ + \frac{{h^{*2} }}{12}\left( {\frac{{dR^{*} }}{{dx^{*} }}\frac{{dw_{10}^{*} }}{{dx^{*} }} + Z_{2} \frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }}} \right)\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{1}{{\varepsilon^{2} }}\left( {\frac{{5h^{*} Z_{2} \theta_{2} }}{24}\frac{{dh^{*} }}{{dx^{*} }}\left( {1 + w_{10}^{*} } \right)^{2} + \left( {w_{10}^{*} + 1} \right)\left( {h^{*2} Z_{2} \frac{{dw_{10}^{*} }}{{dx^{*} }}\left( {\frac{{5\theta_{2} }}{72} + \frac{{\theta_{1} }}{12}} \right) + R^{*} \theta_{1} \frac{{dw_{00}^{*} }}{{dx^{*} }}} \right)} \right) \hfill \\ + \frac{{h^{*2} }}{12}\left( {2R^{*} \frac{{dw_{10}^{*} }}{{dx^{*} }} + Z_{2} \left( {\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right)} \right)\frac{{d^{2} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*2} }} + \frac{{h^{*} }}{360}\left( {30h^{*2} \left( {R^{*} \frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }} + Z_{2} \frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }}} \right)} \right) + \frac{{dw_{10}^{*} }}{{dx^{*} }}\left( {90R^{*} h^{*} \frac{{dh^{*} }}{{dx^{*} }} + 30h^{*2} \frac{{dR^{*} }}{{dx^{*} }}} \right) \hfill \\ \end{aligned} \right)$$
$$\begin{aligned} A_{1,44} = & - \varepsilon^{4} \left( \begin{aligned} \left( {\frac{{R^{*} h^{*2} }}{6}\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{3h^{*4} Z_{2} }}{80}\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)\frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }} + \left( {\frac{{h^{*4} Z_{2} }}{40}\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{3R^{*} h^{*4} }}{80}\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)\frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }} + \left( {9h^{*4} Z_{2} \frac{{d^{2} w_{10}^{*} }}{{dx^{*2} }}} \right)\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} \hfill \\ + \frac{{h^{*3} Z_{2} }}{8}\frac{{dh^{*} }}{{dx^{*} }}\frac{{dw_{10}^{*} }}{{dx^{*} }}\frac{{dw_{00}^{*} }}{{dx^{*} }} + \left( {\frac{{h^{*2} }}{24}\frac{{dR^{*} }}{{dx^{*} }} + \frac{{R^{*} h^{*} }}{8}\frac{{dh^{*} }}{{dx^{*} }}} \right)\left( {\frac{{dw_{00}^{*} }}{{dx^{*} }}} \right)^{2} + \left( {\frac{{3R^{*} h^{*3} }}{32}\frac{{dh^{*} }}{{dx^{*} }} + \frac{{3h^{*4} }}{160}\frac{{dR^{*} }}{{dx^{*} }}} \right)\left( {\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)^{2} \hfill \\ + \frac{{h^{*3} }}{720}\left( {27h^{*2} Z_{2} \frac{{dw_{10}^{*} }}{{dx^{*} }} + 120R^{*} \frac{{dw_{00}^{*} }}{{dx^{*} }} + 60R^{*} \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right)\frac{{d^{2} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*2} }} + \frac{{h^{*} }}{360}(45h^{*3} Z_{2} \frac{{dh^{*} }}{{dx^{*} }}\frac{{dw_{10}^{*} }}{{dx^{*} }} + 30h^{*2} \frac{{dR^{*} }}{{dx^{*} }}\frac{{dw_{00}^{*} }}{{dx^{*} }} \hfill \\ + 60R^{*} h^{*2} \frac{{d^{2} w_{00}^{*} }}{{dx^{*2} }} + 90R^{*} h^{*} \frac{{dh^{*} }}{{dx^{*} }}\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{1}{\varepsilon }\left( {\frac{{h^{*3} Z_{2} }}{16}\frac{{dh^{*} }}{{dx^{*} }}\frac{{du_{10}^{*} }}{{dx^{*} }} + \frac{{h^{*4} Z_{2} }}{80}\frac{{d^{2} u_{10}^{*} }}{{dx^{*2} }}} \right) \hfill \\ \end{aligned} \right) \\ & - \varepsilon^{2} \left( \begin{aligned} \left( {\frac{{h^{*2} \theta_{1} }}{24}\frac{{dR^{*} }}{{dx^{*} }} + \frac{{R^{*} h^{*} \theta_{1} }}{8}\frac{{dh^{*} }}{{dx^{*} }}} \right)\left( {w_{10}^{*2} + 2w_{10}^{*} } \right) + \left( {\frac{{5h^{*2} \theta_{2} }}{72}\frac{{dR^{*} }}{{dx^{*} }} + \frac{{5R^{*} h^{*} \theta_{2} }}{24}\frac{{dh^{*} }}{{dx^{*} }}} \right)\left( {1 + w_{10}^{*} } \right)^{2} + \left( {\frac{{R^{*} }}{4}\frac{{dh^{*} }}{{dx^{*} }} + \frac{{h^{*} }}{12}\frac{{dR^{*} }}{{dx^{*} }}} \right)h^{*} V_{00}^{*} + \hfill \\ \frac{{R^{*} h^{*2} }}{12}\frac{{dV_{00}^{*} }}{{dx^{*} }} + \frac{{dh^{*} }}{{dx^{*} }}\frac{{h^{*} Z_{2} \theta_{1} }}{4}w_{00}^{*} + \left( {\frac{{5^{*2} Z_{2} (5\theta_{2} + 6\theta_{1} )}}{72}\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{R^{*} h^{*2} (5\theta_{2} + 3\theta_{1} )}}{36}\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)\left( {1 + w_{10}^{*} } \right) \hfill \\ + h^{*2} Z_{2} \left( {(25\theta_{2} - 30\theta_{1} )w_{10}^{*} + (25\theta_{2} - 60\theta_{1} )} \right)\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} \hfill \\ \end{aligned} \right) \\ \end{aligned}$$
$$\begin{aligned} & A_{2,22} = \frac{{\varepsilon^{2} R^{*} h^{*2} }}{12} \, ; \, A_{2,23} = \frac{{\varepsilon^{3} h^{*2} }}{12}\left( {R^{*} \frac{{dw_{10}^{*} }}{{dx^{*} }} + Z_{2} \left( {\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right)} \right) \, ; \, A_{2,24} = \frac{{\varepsilon^{3} h^{*2} }}{12}\left( {R^{*} \left( {\frac{{dw_{00}^{*} }}{{dx^{*} }} + \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right) + \frac{{3h^{*2} Z_{2} }}{20}\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right) \, ;A_{2,33} = \varepsilon^{3} R^{*} P_{1}^{*} - \frac{{10\varepsilon^{2} R^{*2} h^{*} \theta_{2} }}{12}\left( {1 + w_{10}^{*} } \right)^{2} \\ & A_{2,34} = \frac{{\varepsilon^{4} R^{*} h^{*3} }}{12}\left( {R^{*} \left( {\frac{{dw_{00}^{*} }}{{dx^{*} }} - \frac{{3Z_{2} h^{*2} }}{40}\frac{{dw_{10}^{*} }}{{dx^{*} }} - \frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }}} \right)\frac{{dw_{10}^{*} }}{{dx^{*} }} - Z_{2} \frac{{dw_{00}^{*} }}{{dx^{*} }}\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} - \frac{{Z_{2} }}{2}\left( {\frac{{dw_{00}^{*} }}{{dx^{*} }}} \right)^{2} } \right) - \frac{{\varepsilon^{3} R^{*2} h^{*3} }}{12}\frac{{du_{10}^{*} }}{{dx^{*} }} - \frac{{\varepsilon^{2} R^{*} h^{*3} }}{12}\left( {V_{00}^{*} + \frac{{5Z_{2} \theta_{2} }}{6}\left( {1 + w_{10}^{*} } \right)^{2} + \frac{{Z_{2} \theta_{1} }}{2}w_{10}^{*} \left( {w_{10}^{*} + 4} \right)} \right)\,\,\, \\ & \, A_{2,42} = \frac{{\varepsilon^{3} h^{*4} Z_{2} }}{80}\frac{{dw_{10}^{*} }}{{dx^{*} }} \, ; \, A_{2,43} = - \varepsilon^{4} \left( \begin{aligned} \frac{{R^{*} h^{*2} }}{6}\left( {\frac{{dw_{00}^{*} }}{{dx^{*} }}\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right) + \frac{3}{160}h^{*4} Z_{2} \left( {\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)^{2} \hfill \\ + \frac{{h^{*2} Z_{2} }}{24}\left( {\frac{{dw_{00}^{*} }}{{dx^{*} }}} \right)^{2} + \frac{{h^{*3} }}{12}\left( {2R^{*} \frac{{dw_{10}^{*} }}{{dx^{*} }} + Z_{2} \frac{{dw_{00}^{*} }}{{dx^{*} }}} \right)\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} \hfill \\ \end{aligned} \right) - \varepsilon^{3} \left( {\frac{{R^{*} h^{*2} }}{12}\frac{{du_{10}^{*} }}{{dx^{*} }}} \right) - \varepsilon^{2} h^{*2} Z_{2} \left( {\frac{1}{12}V_{00}^{*} + \frac{{5\theta_{2} }}{72}\left( {w_{10}^{*} + 1} \right)^{2} + \frac{{\theta_{1} w_{10}^{*} }}{24}\left( {w_{10}^{*} + 4} \right)} \right) \, \\ & A_{2,44} = - \varepsilon^{4} h^{*2} \left( \begin{aligned} \frac{{R^{*} }}{24}\left( {\frac{{dw_{00}^{*} }}{{dx^{*} }}} \right)^{2} + \frac{{h^{*2} Z_{2} }}{40}\frac{{dw_{00}^{*} }}{{dx^{*} }}\frac{{dw_{10}^{*} }}{{dx^{*} }} + \frac{{3R^{*} h^{*2} }}{160}\left( {\frac{{dw_{10}^{*} }}{{dx^{*} }}} \right)^{2} \hfill \\ + \frac{{h^{*} }}{360}\left( {9Z_{2} \frac{{dw_{10}^{*} }}{{dx^{*} }} + 30R^{*} \frac{{dw_{00}^{*} }}{{dx^{*} }}} \right)\frac{{d\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{w}^{*} }}{{dx^{*} }} \hfill \\ \end{aligned} \right) - \varepsilon^{3} \left( {\frac{{h^{*4} Z_{2} }}{80}\frac{{du_{10}^{*} }}{{dx^{*} }}} \right) - \varepsilon^{2} R^{*} h^{*2} \left( {\frac{{5\theta_{2} }}{72}\left( {w_{10}^{*} + 1} \right)^{2} + \frac{{\theta_{1} w_{10}^{*} }}{24}\left( {w_{10}^{*} + 2} \right) + \frac{1}{12}V_{00}^{*} + \frac{{Z_{2} \theta_{1} }}{{12R^{*} }}w_{00}^{*} } \right) \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahboubi Nasrekani, F., Eipakchi, H. Axisymmetric Buckling of Cylindrical Shells with Nonuniform Thickness and Initial Imperfection. Int J Steel Struct 19, 435–445 (2019). https://doi.org/10.1007/s13296-018-0132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0132-9

Keywords

Navigation