Skip to main content
Log in

Fatigue Crack Tip Plasticity for Inclined Cracks

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

The evaluation of the crack tip deformation is essential to the estimation of crack growth under either static or cyclic loading. A 3-D elastic–plastic finite element analysis was developed to simulate the crack tip deformation along mixed mode inclined edge cracks in a steel plate subjected to either monotonic or cyclic loading at selected R-ratios. In this paper, two types of crack configurations were investigated: inclined cracks with equal inclined lengths (EICL) and inclined cracks with equal horizontal projection length (ECHP). The development of the monotonic (Δm) and cyclic (Δc) crack tip plastically zones and the monotonic (CTOD) and cyclic (ΔCTOD) crack tip opening displacements were traced to find the effect of the crack inclination angle, which significantly affected the size and shape of the crack tip plastic zone. The finite element results compared well with the analytical results based on modified Dugdale’s model. It was observed that Mode II has a significant effect on the plastic zone in the case of equal inclined crack length (EICL), i.e., Mode II increases as the crack angle decreases. Also, it is interesting to note that for the EICL case, the magnitude of Δc is delayed to appear with decreasing the inclination angle, for example, for θ = 90° the cyclic plastic zone appeared at Δσ = 103.32 MPa, while for θ = 45° the cyclic plastic zone appeared at Δσ = 132.84 MPa. Whereas, the variation of monotonic and cyclic plastic zone size in the equal crack horizontal projection (ECHP) case is not affected by the crack inclination angle. Furthermore, it was observed that the static crack tip opening displacement (CTOD) and the cyclic (ΔCTOD) are independent of the crack inclination angle in case of ECHP, due to such cracks take into consideration the effect of inclination angle through its length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

w:

Plate width

h:

Plate height

t:

Plate thickness

σ:

Applied stress

KI, KII :

Stress intensity factors for modes I and II, respectively

ΔK:

Stress intensity factor range

a:

Crack length

θ:

Angle made by the crack measured in a clockwise direction from the loading axis

R:

Stress ratio

CTOD:

Monotonic crack tip opening displacement normal to the crack face

CTSD:

Monotonic crack tip sliding displacement

CTODR :

Resultant of monotonic normal and sliding opening displacements

ΔCTODR :

Resultant of cyclic normal and sliding opening displacements

Y:

Geometry correction factor

Δm:

Monotonic plastic zone size (MPZS)

Δc:

Cyclic plastic zone size (CPZS)

FCG:

Fatigue crack growth

εy :

Engineering tensile yield strain

σy :

Engineering tensile yield strength

µ:

Poisson’s ratio

E:

Young’s modulus

ECHP:

Equal crack horizontal projection

EICL:

Equal inclined crack length

References

  • ANSYS release 14.5 documentation. ANSYS Inc.

  • Biner, S. B. (2001). Fatigue crack growth studies under mixed-mode loading. International Journal of Fatigue, 23, S259–S263.

    Article  Google Scholar 

  • Chang, T., & Guo, W. (1999). Effects of strain hardening and stress state on fatigue crack closure. International Journal of Fatigue, 21, 881–888.

    Article  Google Scholar 

  • Dugdale, D. S. (1963). Yielding of steel containing slits. Journal of the Mechanics and Physics of Solids, 8, 103.

    Google Scholar 

  • Elber, W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2, 37–45.

    Article  Google Scholar 

  • Elber, W. (1971). The significance of fatigue crack closure. In Damage tolerance in aircraft structures (pp. 230–242). ASTM STP486. https://ntrs.nasa.gov/search.jsp?R=19710054465.

  • El-Emam, H., Salim, H., & Sallam, H. (2016). Composite patch configuration and prestraining effect on crack tip deformation and plastic zone for inclined cracks. Journal of Composites for Construction, 20(4), 04016002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000655,04016002.

    Article  Google Scholar 

  • El-Emam, H., Salim, H., & Sallam, H. (2017). Composite patch configuration and prestress effect on SIFs for inclined cracks in steel plates. Journal of Structural Engineering, 143(5), 04016229. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001727.

    Article  Google Scholar 

  • Hammouda, M. M. I., Ahmad, S. E., & Sallam, H. E. M. (1995). Correlation of fatigue crack growth by crack tip deformation behavior. Fatigue and Fracture of Engineering Materials and Structures, 18(1), 93–104.

    Article  Google Scholar 

  • Hammouda, M. M. I., Ahmad, S. E., Sherbini, A. S., & Sallam, H. E. M. (1999). Deformation behaviour at the tip of physically short fatigue crack due to a single overload. Fatigue and Fracture of Engineering Materials and Structures, 22(2), 145–151.

    Article  Google Scholar 

  • Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2002). Mode II stresses intensity factors for central slant cracks with frictional surfaces in uniaxially compressed plates. International Journal of Fatigue, 24(12), 1213–1222.

    Article  MATH  Google Scholar 

  • Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2003a). Simulation of mixed mode I/II cyclic deformation at the tip of a short kinked inclined crack with frictional surfaces. International Journal of Fatigue, 25, 743–753.

    Article  Google Scholar 

  • Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2003b). Stress intensity factors of a shortly kinked slant central crack with frictional surfaces in uniaxially loaded plates. International Journal of Fatigue, 25(4), 283–298.

    Article  Google Scholar 

  • Hammouda, M. M. I., Osman, H. G., & Sallam, H. E. M. (2004a). Mode I notch fatigue crack growth behaviour under constant amplitude loading and due to the application of a single tensile overload. International Journal of Fatigue, 26(2), 183–192.

    Article  Google Scholar 

  • Hammouda, M. M. I., Sallam, H. E. M., & Osman, H. G. (2004b). Significance of crack tip plasticity to early notch fatigue crack growth. International Journal of Fatigue, 26(2), 173–182.

    Article  Google Scholar 

  • Hannachi, M. T., & Djebaili, H. (2013). Analysis of the elastic energy and crack tip opening displacement with increased yield stress. Journal of Science and Engineering, 2, 163–172.

    Google Scholar 

  • Isida, N. (1966). Stress-intensity factors for the tension of an eccentrically cracked strip. Journal of Applied Mechanics, 33(3), 674–675.

    Article  Google Scholar 

  • Ma, F., Deng, X., Sutton, M.A., & Newman, Jr. (1999). A CTOD-based mixed-mode fracture criterion. ASTM STP9 (vol. 135, pp. 86–110).

  • McEvily, A. J. (2009). On the cyclic crack-tip opening displacement. Fatigue and Fracture of Engineering Materials and Structures, 32, 284–285.

    Article  Google Scholar 

  • Murakami, Y. (1987). Stress intensity factor handbook (Vol. 1). Oxford: Pergamon Press.

    Google Scholar 

  • Para, A. F., Sanjust, V., Shoptaw, S., Jarvik, M. E., Ling, W., Rawson, R. A., et al. (1996). Plastic zone size in fatigue cracking. International Journal of Pressure Vessels and Piping, 68, 279–285.

    Article  Google Scholar 

  • Paul, S. K., & Tarafder, S. (2013). Cyclic plastic deformation response at fatigue crack tips. International Journal of Pressure Vessels and Piping, 101, 81–90.

    Article  Google Scholar 

  • Plank, R., & Kuhn, G. (1999). Fatigue crack propagation under non-proportional mixed mode loading. Engineering Fracture Mechanics, 62, 203–229.

    Article  Google Scholar 

  • Qian, J., & Fatemi, A. (1996). Fatigue crack growth under mixed-mode I and II loading. Fracture of Engineering Materials & Structures, 19, 1277–1284.

    Article  Google Scholar 

  • Qian, J., & Fatemi, A. (1999). Fatigue cracking behavior of 1045 HR steel subjected to mixed-mode I and II loading, Part II: Crack growth behavior and predictions. In T. Cordes & K. Lease (Eds.), Multi-axial fatigue of an induction hardened shaft (pp. 165–174). Warrendale, PA: Society of Automotive Engineers.

    Google Scholar 

  • Reddy, S. C., & Fatemi, A. (1992). Small crack growth in multiaxial fatigue (vol. 112, pp. 276–298). ASTM STP2. https://doi.org/10.1520/STP24164S.

  • Rice, J. R. (1967). Mechanics of crack tip deformation and extension by fatigue. In Fatigue crack propagation (pp. 247–310). ASTM STP 415. https://doi.org/10.1520/STP47234S.

  • Soh, A. K., & Bain, L. C. (2001). Mixed mode fatigue crack growth criteria. International Journal of Fatigue, 23, 427–439.

    Article  Google Scholar 

  • Suresh, S. (1998). Fatigue of materials (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tada, H., Paris, P. C., & Irwin, G. R. (1973). The stress analysis of cracks handbook. Hellertown, PA: Del Research Corp.

    Google Scholar 

  • Wells, A. A. (1963). Application of fracture mechanics at and beyond general yielding. British Welding Journal, 10–11, 563–570.

    Google Scholar 

  • Wong, S. L., Bold, P. E., Brown, M. W., & Allen, R. J. (2000). Fatigue crack growth rates under sequential mixed-mode I and II loading cycles. Fatigue and Fracture of Engineering Materials and Structures, 23, 667–674.

    Article  Google Scholar 

  • You, B. R., & Lee, S. B. (1998). Fatigue crack growth behavior of SM45Csteel under mixed-mode I and II loading. Fatigue and Fracture of Engineering Materials and Structures, 21, 1037–1048.

    Article  Google Scholar 

  • Zhang, W., & Liu, Y. (2011). Plastic zone size estimation under cyclic loadings using in situ optical microscopy fatigue testing. Fatigue and Fracture of Engineering Materials and Structures, 34, 717–727.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham El-Emam.

Additional information

Hesham El-Emam and Hossam Sallam—On leave from Materials Engineering Department, Zagazig University, Zagazig, Egypt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Emam, H., Elsisi, A., Salim, H. et al. Fatigue Crack Tip Plasticity for Inclined Cracks. Int J Steel Struct 18, 443–455 (2018). https://doi.org/10.1007/s13296-018-0016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0016-z

Keywords

Navigation