Skip to main content
Log in

Static Experiment on Mechanical Behavior of Innovative Flat Steel Plate-Concrete Composite Slabs

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

A new type of composite slab is introduced in this paper, which is composed of normal flat steel plates and concrete slabs, connected and interacted by perfobond shear connectors (PBL shear connectors). Experiments on six specimens of this type of composite slab, loaded at two symmetric two-points, were described in this paper to get mechanical behaviors under bending moments. During the experiments, the crack patterns, failure modes, failure mechanism and ultimate bending capacity of specimens with composite slab were investigated, and the strains of concrete and flat steel plates were also measured and recorded in order to obtain the moment action. From the experimental results, it was found that composite interaction between the steel plate and the concrete fully developed, and such composite slab was verified to have good mechanical performance with high bending capacity, substantial flexural rigidity and good ductility. Plane section assumption was also verified and moreover, a design approach including calculation methods of bending capacity and flexural rigidity was established and proposed based on the experimental results, and the calculation methods were also verified and revised on the basis of comparisons of the calculated results and experimental results. Results from this paper provide references for the application of this new type composite slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allahyari, H., Dehestani, M., Beygi, M. H., Neya, B. W., & Rahmani, E. (2014). Mechanical behavior of steel-concrete composite decks with perfobond shear connectors. Steel and Composite Structures, 17(3), 339–358.

    Article  Google Scholar 

  • Egilmez, O. O., Helwig, T. A., Jetann, C. A., & Lowery, R. (2007). Stiffness and strength of metal bridge deck forms. Journal of Bridge Engineering, 12(4), 429–437.

    Article  Google Scholar 

  • Hu X. L., Lin Y., & Wang Q. Y. (2013). Experimental analysis of perfonbond shear connection between steel and pre-stressed concrete. In The 2013 world congress on advances in structural engineering and mechanics (pp. 190–198). Jeju, Korea.

  • Johnson, R. P. (2004). Prediction of shear resistance of headed studs in troughs of profiled sheeting. Oxford: Blackwell Pub.

    Google Scholar 

  • Johnson R. P. (2011). Composite structures of steel and concrete: beams, slabs, columns, and frames for buildings. Composite Construction in Steel and Concrete VI, pp. 1–13.

  • Kozioł, P. (2015). Modern design of steel-concrete composite structures. Modern design of steel-concrete composite structures, 21(171), 118–127.

    Google Scholar 

  • Leon, R. T. (2004). Composite construction in steel and concrete V. In Proceedings of the 5th international conference, July 18–23, Kruger National Park, Berg-en-Dal, Mpumalanga, South Africa.

  • Leon, R. T. (2008). Composite construction in steel and concrete VI. In Proceedings of the 2008 composite construction in steel and concrete conference, July 20–24, Tabernash, Colorado.

  • Li, S. Q., Wan, S., & Chen, J. B. (2009). Test study of a new type of shear connector. International Journal of Bridge Construction, 2009(04), 17–19.

    Google Scholar 

  • Nie, J. G., Yi, W. H. J., & Lei, L. Y. (2003). Rigidity calculation of closed profiled sheeting-concrete composite slabs. Industrial Construction, 33(12), 19–21.

    Google Scholar 

  • Nishiumi, K., & Okimoto, M. (1999). Shear strength of perfobond rib shear connector under the confinement. International Journal of Japanese Society of Civil Engineering, 633, 193–203.

    Google Scholar 

  • Oehlers, D. J., & Bradford, M. A. (1995). composite steel and concrete structural members-fundamental behavior. Pergamon, Oxford: Elsevier Science.

    Google Scholar 

  • Papastergiou, D., & Lebet, J. P. (2014). Investigation of a new steel-concrete connection for composite bridges. Steel and Composite Structures, 17(5), 573–599.

    Article  Google Scholar 

  • Rackham, J. W., Couchman, G. H., & Hicks, S. J. (2009). Composite slabs and beams using steel decking: Best practice for design and construction. UK: Steel Construction Institute.

    Google Scholar 

  • Ren, J. (2006). Experimental study on fatigue behaviors of steel-concrete composite structures. Master. Dissertation, Southwest Jiaotong University, China. (in Chinese).

  • Uy, B., & Bradford, M. A. (1994). Inelastic local buckling behavior of thin steel plates in profiled composite beams. The Structural Engineer, 72(16), 259–267.

    Google Scholar 

  • Wang, W. A., Li, Q., Zhao, C. H., & Zhuang, W. L. (2014). Experimental study on bearing capacity of PBL shear connector group in hybrid structures. China Civil Engineering Journal, 47(6), 109–117. (in Chinese).

    Google Scholar 

  • Wen, X., Ye, J. S., Gai, X. M., & Cai, C. S. (2013). Mechanical performance and design optimization of rib-stiffened super-wide bridge deck with twin box girders in concrete. Structural Engineering and Mechanics, 48(3), 395–414.

    Article  Google Scholar 

  • Wu, H., & Hosain, M. U. (2002).Composite beams with parallel wide ribbed metal deck. Composite Construction in Steel and Concrete VI, pp. 415–425.

  • Yang, Y., & Huo, X. D. (2011). Experimental study on fatigue behavior of steel plate-concrete composite bridge decks. Engineering Mechanics, 28(8), 37–45. (in Chinese).

    Google Scholar 

  • Yang, Y., Liu, J. B., Fan, J. S., & Nie, X. (2013). Experimental study on flexural capacity of steel plate-concrete composite slabs. Journal of Building Structures, 34(10), 24–31. (in Chinese).

    Google Scholar 

  • Yang, Y., Yu, Y. L., Zhou, X. W., Roeder, C. W., & Huo, X. D. (2016). Study on mechanism performance of composite beam with innovative composite slabs. Steel and Composite Structures, 21(3), 537–551.

    Article  Google Scholar 

  • Yang, Y., Zhou, X. W., Xue, J. Y., & Huo, X. D. (2012). Experimental study on fatigue behavior of composite girders with steel plate-concrete composite decks. China Civil Engineering Journal, 45(6), 135–141. (in Chinese).

    Google Scholar 

  • Yang, Y., Zhu, G., Zhou, P. J., Nie, J. G., et al. (2009). Experimental study on the mechanical behavior and design method of plane steel-plate and concrete composite bridge decks. China Civil Engineering Journal, 42(12), 135–141. (in Chinese).

    Google Scholar 

  • Yeol, H., & Jeong, Y. J. (2006). Experimental investigation on behavior of steel–concrete composite bridge decks with perfobond ribs. Journal of Construction Steel Research, 62(5), 463–471.

    Article  MathSciNet  Google Scholar 

  • Zhan, Y. L., & Zhao, R. D. (2006). Experimental study and theoretical analysis on steel-concrete composite bridge decks. Journal of Southwest Jiaotong University, 41(3), 360–365. (in Chinese).

    Google Scholar 

Download references

Acknowledgements

The experiments were sponsored by the National Natural Science Foundation of China (Program Nos. 50708,040 and 50978107) and supported by the Program for Changjiang Scholars and Innovative Research Team at the University of China as well as the Program for Innovative Research Team of Xi’an University of Architecture and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, R., Huo, X. et al. Static Experiment on Mechanical Behavior of Innovative Flat Steel Plate-Concrete Composite Slabs. Int J Steel Struct 18, 473–485 (2018). https://doi.org/10.1007/s13296-018-0012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0012-3

Keywords

Navigation