Skip to main content
Log in

Bayesian probabilistic approach for model updating and damage detection for a large truss bridge

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

A Bayesian probabilistic methodology is presented for structural model updating using incomplete measured modal data which also takes into account different types of errors such as modelling errors due to the approximation of actual complex structure, uncertainties introduced by variation in material and geometric properties, measurement errors due to the noises in the signal and the data processing. The present work uses Linear Optimization Problems (LOP) to compute the probability that continually updated the model parameters. A real life rail-cum-roadway long steel truss bridge (Saraighat bridge) is considered in the present study, where identified modal data are available from measured acceleration responses due to ambient vibration. The main contributions of this paper are: (1) the introduction of sufficient number of model parameters at the element property level in order to capture any variations in the sectional properties; (2) the development of an accurate baseline model by utilizing limited sensor data; (3) the implementation of a probabilistic damage detection approach that utilizes updated model parameters from the undamaged state and possibly damaged state of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baruch, M. (1982). “Optimal correction of mass and stiffness matrices using measured modes.” Journal of American Institute of Aeronautics and Astronautics, 20(11), pp. 1623–1626.

    Article  Google Scholar 

  • Beck, J. L. and Katafygiotis, L. S. (1998). “Updating models and their uncertainties. I: Bayesian statistical framework.” Journal of Engineering Mechanics, ASCE, 124(4), pp. 455–461.

    Article  Google Scholar 

  • Beck, J. L., Au, S. K., and Vanik, M. W. (2001). “Monitoring structural health using a probabilistic measure.” Computer-Aided Civil and Infrastructure Engineering, 16(1), pp. 1–11.

    Article  Google Scholar 

  • Beck, J. L. and Au, S. K. (2002). “Bayesian updating of structural models and reliability using Markov Chain Monte Carlo simulation.” Journal of Engineering Mechanics, ASCE, 128(4), pp. 380–391.

    Article  Google Scholar 

  • Berman, A. (2000). “Inherently incomplete finite element model and its effects on model updating.” Journal of American Institute of Aeronautics and Astronautics, 38(11), pp. 2142–2146.

    Article  Google Scholar 

  • Caesar, B. (1987). “Updating system matrices using modal testing data.” Proc. Fifth IMAC, pp. 453–459.

    Google Scholar 

  • Caicedo, J., Dyke, S., and Johnson, E. (2004). “Natural excitation technique and eigensystem realization algorithm for phase I of the IASC-ASCE benchmark problem: simulated data.” Journal of Engineering Mechanics, 130(1), pp. 49–60.

    Article  Google Scholar 

  • Carvalho, J., Datta, B. N., Lin, W., and Wang, C. (2006). “Symmetry preserving eigenvalue embedding in finite element model updating of vibration structures.” Journal of Sound and Vibration, 290, pp. 839–864.

    Article  MathSciNet  Google Scholar 

  • Chen, H. P. (2006). “Efficient methods for determining modal parameters of dynamic structures with large modifications.” Journal of Sound and Vibration, 298, pp. 462–470.

    Article  Google Scholar 

  • Ching, J. and Chen, Y. C. (2007). “Transitional Markov Chain Monte Carlo method for Bayesian updating, model class selection, and model averaging.” Journal of Engineering Mechanics, 133, pp. 816–832.

    Article  Google Scholar 

  • Collins, J. D., Hart, G. C., Hasselman, T. K., and Kennedy, B. (1974). “Statistical identification of structures.” Journal of American Institute of Aeronautics and Astronautics, 12, pp. 185–190.

    Article  Google Scholar 

  • CSI Computer & Structures Inc. (2009). Three dimentional static and dynamic finite element analysis and design of structures. SAP2000, Computer & Structures, Inc., Berkeley, CA.

  • Debnath, N., Dutta, A., and Deb, S. K. (2012). “Placement of sensors in operational modal analysis for truss bridges.” Mechanical Systems and Signal Processing, 31, pp. 196–216.

    Article  Google Scholar 

  • Doebling, S. W., Farrar, C. R., Prime, M. B., and Shevitz, D.W. (1996). Damage identification and health monitoring of structural and mechanical systems from changes in their vibrations characteristics: A literature review. Technical Report LA-13070-MS, Los Alamos National Laboratory, Los Alamos, NM.

    Book  Google Scholar 

  • Ewins, D. J. (2000). Modal testing: Theory, practice, and application, 2nd Ed., Research Studies, Baldock, UK.

    Google Scholar 

  • Feng, M. Q., Kim, J. M., and Xue, H. (1998). “Identification of a dynamic system using ambient vibration measurements.” Journal of Applied Mechanics, ASME, 65, pp. 1010–1021.

    Article  Google Scholar 

  • Friswell, M. I. and Mottershead, J. E. (1995). Finite element model updating in structural dynamics. Kluwer Academic, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Goller, B., Beck, J. L., and Schueller, G. I. (2012). “Evidence-based identification of weighting factors in Bayesian model updating using modal data.” Journal of Engineering Mechanics, 138, pp. 430–440.

    Article  Google Scholar 

  • Haario, H., Laine, M., Mira, A., and Saksman, E. (2006). “DRAM: efficient adaptive MCMC.” Journal of Statistics and Computing, 16, pp. 339–354.

    Article  MathSciNet  Google Scholar 

  • Katafygiotis, L. S. and Beck, J. L. (1998). “Updating models and their uncertainties. II: Model identifiability.” Journal of Engineering Mechanics, ASCE, 124(4), pp. 463–467.

    Article  Google Scholar 

  • Katafygiotis, L. S. and Yuen, K. V. (2001). “Bayesian spectral density approach for modal updating using ambient data.” Earthquake Engineering and Structural Dynamics, 30(8), pp. 1103–1123.

    Article  Google Scholar 

  • Kinemetrics Inc. (2008a). “EpiSensor ES-U2, Uni-axial force balance accelerometers.” <http://www.kinemetrics. com/p-86-EpiSensor-ES-U2.aspx>, retrieved April 2, 2015.

  • Kinemetrics Inc. (2008b). “EpiSensor ES-T, Tri-axial force balance accelerometers.” <http://www.kinemetrics.com/ p-87-EpiSensor-ES-T.aspx>, retrieved April 2, 2015.

  • Marwala, T. (2010). Finite element model updating using computational intelligence techniques: applications to structural dynamics. Springer.

    Book  Google Scholar 

  • Masri, S. F., Nakamura. M., Chassiakos, A. G., and Caughey, T. K. (1996). “Neural network approach to the detection of changes in structural parameters.” Journal of Engineering Mechanics, 122(4), pp. 350–360.

    Article  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). “Equation of state calculations by fast computing machines.” Journal of Chemical Physics, 21, pp. 1087–1092.

    Article  Google Scholar 

  • Mottershead, J. E. and Friswell, M. I. (1993). “Model updating in structural dynamics: A survey.” Journal of Sound and Vibration, 167, pp. 347–375.

    Article  Google Scholar 

  • Nakamura, M., Masri, S. F., Chassiakos, A. G., and Caughey, T. K. (1998). “A method for non-parametric damage detection through the use of neural networks.” Earthquake Engineering and Structural Dynamics, 27(9), pp. 997–1010.

    Article  Google Scholar 

  • Papadimitriou, C., Beck. J. L., and Katafygiotis, L. S. (1997). “Asymptotic expansions for reliability and moments of uncertain systems.” Journal of Engineering Mechanics, ASCE, 123(12), pp. 1219–1229.

    Article  Google Scholar 

  • Salawu, O. S. (1997). “Detection of structural damage through changes in frequency: a review.” Engineering Structures, 19(9), pp. 718–723.

    Article  Google Scholar 

  • Sohn, H., Farrar, C. R., Hemez, F. M, Shunk, D. D, Stinemates, D. W., and Nadler, B. R. (2003). A review of structural health monitoring literature: 1996-2001. Technical Report LA-13976-MS, Los Alamos National Laboratory, Los Alamos, NM.

    Google Scholar 

  • Vanik, M. W., Beck, J. L., and Au, S. K. (2000). “Bayesian probabilistic approach to structural health monitoring.” Journal of Engineering Mechanics, ASCE, 126(7), pp. 738–745.

    Article  Google Scholar 

  • Van Overschee, P. and De Moor, B. (1993). “Subspace algorithm for the stochastic identification problem.” Automatica, 29(3), pp. 649–660.

    Article  MathSciNet  Google Scholar 

  • Wu, S. R. (2006). “Lumped mass matrix in explicit finite element method for transient dynamics of elasticity”. Journal of Computer Methods in Applied Mechanics and Engineering, 195(44), pp. 5983–5994.

    Article  Google Scholar 

  • Yang, Y. B. and Chen, Y. J. (2009). “A new direct method for updating structural models based on measured modal data.” Journal of Engineering Structures, 31, pp. 32–42.

    Article  Google Scholar 

  • Yuen, K. V. and Katafygiotis, L. S. (2002). “Bayesian modal updating using complete input and incomplete response noisy measurements.” Journal of Engineering Mechanics, ASCE, 128(3), pp. 340–350.

    Article  Google Scholar 

  • Yuen, K. V., Beck, J. L., and Katafygiotis, L. S. (2006). “Efficient model updating and monitoring methodology using incomplete modal data without mode matching.” Journal of Structural Control and Health Monitoring, 13(1), pp. 91–107.

    Article  Google Scholar 

  • Yuen, K. V. (2010). Bayesian methods for structural dynamics and civil engineering. John Wiley & Sons (Asia) Pte Ltd.

  • Zhang, L., Wang, T., and Tamura, Y. (2010). “A frequencyspatial domain decomposition (FSDD) method for operational modal analysis.” Mechanical Systems and Signal Processing, 24(5), pp. 227–1239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Dutta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, S., Debnath, N. & Dutta, A. Bayesian probabilistic approach for model updating and damage detection for a large truss bridge. Int J Steel Struct 15, 473–485 (2015). https://doi.org/10.1007/s13296-015-6016-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-015-6016-3

Keywords

Navigation