, Volume 7, Issue 1, pp 13–22 | Cite as

Neurobiology of food choices—between energy homeostasis, reward system, and neuroeconomics

  • Laura Enax
  • Bernd WeberEmail author
Review article


The rate of patients with obesity has been rapidly increasing, and this imposes a heavy economic burden on health-care systems. Food decisions, under the influence of different internal and external factors, lie at the core of this increasing health problem. Due to the biological necessity to consume sufficient amounts of food and to correctly regulate energy expenditure, there are different systems that control food intake. This article first focuses on neurobiological and hormonal foundations and explains various metabolic short- and long-term signals, such as leptin, insulin, and ghrelin. We then also present genetic factors, which directly or indirectly (via other genes or environmental influences) may affect nutritional status. Since the consumption of high-caloric foods is accompanied by dopamine release and the activation of the brain’s reward system, we will then present the interdependence of metabolic and reward systems. Last, we will present a neuroeconomic perspective that complements research on metabolic and hedonic feeding regulation.


Food decisions Neuroeconomics Decision-making Neurobiology 


  1. 1.
    Wansink B, Sobal J (2007) Mindless eating: the 200 daily food decisions we overlook. Environ Behav 39:106–123. doi: 10.1177/0013916506295573 CrossRefGoogle Scholar
  2. 2.
    Rangel A (2013) Regulation of dietary choice by the decision-making circuitry. Nat Neurosci 16:1717–1724. doi:10.1038/nn.3561PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Saper CB, Chou TC, Elmquist JK (2002) The Need to feed: homeostatic and hedonic control of eating. Neuron 36:199–211. doi: 10.1016/S0896-6273(02)00969-8 PubMedCrossRefGoogle Scholar
  4. 4.
    Kenny PJ (2011) Reward mechanisms in obesity: new insights and future directions. Neuron 69:664–679. doi:10.1016/j.neuron.2011.02.016PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Williams KW, Elmquist JK (2012) From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 15:1350–1355. doi:10.1038/nn.3217PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Andersen MK, Sandholt CH (2015) Recent progress in the understanding of obesity: contributions of genome-wide association studies. Curr Obes Rep 4:401–410. doi:10.1007/s13679-015-0173-8PubMedCrossRefGoogle Scholar
  7. 7.
    Hawkes C, Smith TG, Jewell J et al (2015) Smart food policies for obesity prevention. Lancet Lond Engl 385:2410–2421. doi:10.1016/S0140-6736(14)61745-1CrossRefGoogle Scholar
  8. 8.
    Morton GJ, Cummings DE, Baskin DG et al (2006) Central nervous system control of food intake and body weight. Nature 443:289–295. doi:10.1038/nature05026PubMedCrossRefGoogle Scholar
  9. 9.
    Abizaid A, Gao Q, Horvath TL (2006) Thoughts for food: brain mechanisms and peripheral energy balance. Neuron 51:691–702. doi:10.1016/j.neuron.2006.08.025PubMedCrossRefGoogle Scholar
  10. 10.
    Gao Q, Horvath TL (2007) Neurobiology of feeding and energy expenditure. Annu Rev Neurosci 30:367–398. doi:10.1146/annurev.neuro.30.051606.094324PubMedCrossRefGoogle Scholar
  11. 11.
    Schwartz MW, Woods SC, Porte D et al (2000) Central nervous system control of food intake. Nature 404:661–671. doi:10.1038/35007534PubMedGoogle Scholar
  12. 12.
    Morton GJ, Meek TH, Schwartz MW (2014) Neurobiology of food intake in health and disease. Nat Rev Neurosci 15:367–378. doi:10.1038/nrn3745PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Benoit SC, Clegg DJ, Seeley RJ, Woods SC (2004) Insulin and leptin as adiposity signals. Recent Prog Horm Res 59:267–285PubMedCrossRefGoogle Scholar
  14. 14.
    Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432. doi:10.1038/372425a0PubMedCrossRefGoogle Scholar
  15. 15.
    Lustig RH, Sen S, Soberman JE, Velasquez-Mieyer PA (2004) Obesity, leptin resistance, and the effects of insulin reduction. Int J Obes 28:1344–1348. doi:10.1038/sj.ijo.0802753CrossRefGoogle Scholar
  16. 16.
    Cottrell EC, Mercer JG (2012) Leptin receptors. Handb Exp Pharmacol 3–21. doi:10.1007/978-3-642-24716-31Google Scholar
  17. 17.
    Hommel JD, Trinko R, Sears RM et al (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810. doi:10.1016/j.neuron.2006.08.023PubMedCrossRefGoogle Scholar
  18. 18.
    Barrachina MD, Martínez V, Wang L et al (1997) Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci U S A 94:10455–10460PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Emond M, Schwartz GJ, Ladenheim EE, Moran TH (1999) Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 276:R1545–R1549PubMedGoogle Scholar
  20. 20.
    Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277:942–946PubMedCrossRefGoogle Scholar
  21. 21.
    Doyon C, Drouin G, Trudeau VL, Moon TW (2001) Molecular evolution of leptin. Gen Comp Endocrinol 124:188–198. doi:10.1006/gcen.2001.7701PubMedCrossRefGoogle Scholar
  22. 22.
    Morton GJ, Meek TH, Schwartz MW (2014) Neurobiology of food intake in health and disease. Nat Rev Neurosci 15:367–378. doi:10.1038rn3745PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Gibbs J, Young RC, Smith GP (1997) Cholecystokinin decreases food intake in rats1. Obes Res 5:284–290. doi:10.1002/j.1550–8528.1997.tb00305.xPubMedCrossRefGoogle Scholar
  24. 24.
    Turton MD, O’Shea D, Gunn I et al (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72. doi:10.1038/379069a0PubMedCrossRefGoogle Scholar
  25. 25.
    Lam TKT (2010) Neuronal regulation of homeostasis by nutrient sensing. Nat Med 16:392–395. doi:10.1038/nm0410-392PubMedCrossRefGoogle Scholar
  26. 26.
    Nakazato M, Murakami N, Date Y et al (2001) A role for ghrelin in the central regulation of feeding. Nature 409:194–198. doi:10.1038/35051587PubMedCrossRefGoogle Scholar
  27. 27.
    Cummings DE, Purnell JQ, Frayo RS et al (2001) A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50:1714–1719PubMedCrossRefGoogle Scholar
  28. 28.
    Druce MR, Wren AM, Park AJ et al (2005) Ghrelin increases food intake in obese as well as lean subjects. Int J Obes 29:1130–1136. doi:10.1038/sj.ijo.0803001CrossRefGoogle Scholar
  29. 29.
    Müller TD, Nogueiras R, Andermann ML et al (2015) Ghrelin. Mol Metab 4:437–460. doi: 10.1016/j.molmet.2015.03.005 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Abizaid A, Liu Z-W, Andrews ZB et al (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest 116:3229–3239. doi: 10.1172/JCI29867 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Diano S, Farr SA, Benoit SC et al (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9:381–388. doi:10.1038/nn1656PubMedCrossRefGoogle Scholar
  32. 32.
    Elmquist JK, Coppari R, Balthasar N et al (2005) Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 493:63–71. doi: 10.1002/cne.20786 PubMedCrossRefGoogle Scholar
  33. 33.
    Steculorum SM, Collden G, Coupe B et al (2015) Neonatal ghrelin programs development of hypothalamic feeding circuits. J Clin Invest 125:846–858. doi: 10.1172/JCI73688 PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578. doi:10.1038/nn1455PubMedCrossRefGoogle Scholar
  35. 35.
    Gropp E, Shanabrough M, Borok E et al (2005) Agouti-related peptide–expressing neurons are mandatory for feeding. Nat Neurosci 8:1289–1291. doi:10.1038/nn1548PubMedCrossRefGoogle Scholar
  36. 36.
    Luquet S, Perez FA, Hnasko TS, Palmiter RD (2005) NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 310:683–685. doi:10.1126/science.1115524PubMedCrossRefGoogle Scholar
  37. 37.
    James PT, Leach R, Kalamara E, Shayeghi M (2001) The worldwide obesity epidemic. Obes Res 9:228S–233S. doi: 10.1038/oby.2001.123 PubMedCrossRefGoogle Scholar
  38. 38.
    Xia Q, Grant SF (2013) The genetics of human obesity. Ann N Y Acad Sci 1281:178–190. doi:10.1111/nyas.12020PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Albuquerque D, Stice E, Rodríguez-López R et al (2015) Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Genet Genomics MGG 290:1191–1221. doi: 10.1007/s00438-015-1015-9 PubMedCrossRefGoogle Scholar
  40. 40.
    Silventoinen K, Rokholm B, Kaprio J, Sørensen TIA (2010) The genetic and environmental influences on childhood obesity: a systematic review of twin and adoption studies. Int J Obes 34:29–40. doi: 10.1038/ijo.2009.177 CrossRefGoogle Scholar
  41. 41.
    Farooqi IS, O’Rahilly S (2005) Monogenic obesity in humans. Annu Rev Med 56:443–458. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  42. 42.
    Mutch DM, Clément K (2006) Unraveling the genetics of human obesity. PLoS Genet 2:e188. doi: 10.1371/journal.pgen.0020188 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Rankinen T, Zuberi A, Chagnon YC et al (2006) The human obesity gene map: the 2005 update. Obes Silver Spring Md 14:529–644. doi: 10.1038/oby.2006.71 CrossRefGoogle Scholar
  44. 44.
    González-Jiménez E, Aguilar Cordero MJ, Padilla López CA, García García I (2012) [Monogenic human obesity: role of the leptin-melanocortin system in the regulation of food intake and body weight in humans]. An Sist Sanit Navar 35:285–293PubMedCrossRefGoogle Scholar
  45. 45.
    Krude H, Biebermann H, Luck W et al (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19:155–157. doi: 10.1038/509 PubMedCrossRefGoogle Scholar
  46. 46.
    Frayling TM, Timpson NJ, Weedon MN et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894. doi: 10.1126/science.1141634 PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Loos RJF, Lindgren CM, Li S et al (2008) Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet 40:768–775. doi:10.1038/ng.140PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Eny KM, Wolever TMS, Fontaine-Bisson B, El-Sohemy A (2008) Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol Genomics 33:355–360. doi: 10.1152/physiolgenomics.00148.2007 PubMedCrossRefGoogle Scholar
  49. 49.
    Rankinen T, Bouchard C (2006) Genetics of food intake and eating behavior phenotypes in humans. Annu Rev Nutr 26:413–434. doi: 10.1146/annurev.nutr.26.061505.111218 PubMedCrossRefGoogle Scholar
  50. 50.
    Walley AJ, Asher JE, Froguel P (2009) The genetic contribution to non-syndromic human obesity. Nat Rev Genet 10:431–442. doi:10.1038/nrg2594PubMedCrossRefGoogle Scholar
  51. 51.
    Herrera BM, Keildson S, Lindgren CM (2011) Genetics and epigenetics of obesity. Maturitas 69:41–49. doi: 10.1016/j.maturitas.2011.02.018 PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Cummings DE, Schwartz MW (2003) Genetics and pathophysiology of human obesity. Annu Rev Med 54:453–471. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  53. 53.
    Klimentidis YC, Arora A, Chougule A et al (2015) FTO association and interaction with time spent sitting. Int J Obes. doi: 10.1038/ijo.2015.190
  54. 54.
    Lee H, Ash GI, Angelopoulos TJ et al (2015) Obesity-related genetic variants and their associations with physical activity. Sports Med - Open 1:34. doi: 10.1186/s40798-015-0036-6 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Hess ME, Hess S, Meyer KD et al (2013) The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 16:1042–1048. doi:10.1038/nn.3449PubMedCrossRefGoogle Scholar
  56. 56.
    Sevgi M, Rigoux L, Kühn AB et al (2015) An Obesity-predisposing variant of the FTO gene regulates D2R-dependent reward learning. J Neurosci Off J Soc Neurosci 35:12584–12592. doi:10.1523/JNEUROSCI.1589–15.2015CrossRefGoogle Scholar
  57. 57.
    Rolls ET (2008) Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung 95:131–164. doi: 10.1556/APhysiol.95.2008.2.1 PubMedCrossRefGoogle Scholar
  58. 58.
    Volkow ND, Wang G-J, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15:37–46. doi: 10.1016/j.tics.2010.11.001 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Stice E, Figlewicz DP, Gosnell BA et al (2013) The contribution of brain reward circuits to the obesity epidemic. Neurosci Biobehav Rev 37:2047–2058. doi: 10.1016/j.neubiorev.2012.12.001 PubMedCrossRefGoogle Scholar
  60. 60.
    Small DM, Gitelman DR, Gregory MD et al (2003) The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. Neuroimage 18:633–641. doi:10.1016/S1053-8119(02)00012–5 PubMedCrossRefGoogle Scholar
  61. 61.
    Szczypka MS, Kwok K, Brot MD et al (2001) Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30:819–828PubMedCrossRefGoogle Scholar
  62. 62.
    Norgren R, Hajnal A, Mungarndee SS (2006) Gustatory reward and the nucleus accumbens. Physiol Behav 89:531–535. doi: 10.1016/j.physbeh.2006.05.024 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Epstein LH, Temple JL, Roemmich JN, Bouton ME (2009) Habituation as a determinant of human food intake. Psychol Rev 116:384–407. doi: 10.1037/a0015074 PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct BBF 6:24. doi: 10.1186/1744-9081-6-24 PubMedCrossRefGoogle Scholar
  65. 65.
    Rothemund Y, Preuschhof C, Bohner G et al (2007) Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. Neuroimage 37:410–421. doi: 10.1016/j.neuroimage.2007.05.008 PubMedCrossRefGoogle Scholar
  66. 66.
    Stice E, Spoor S, Bohon C et al (2008) Relation of reward from food intake and anticipated food intake to obesity: a functional magnetic resonance imaging study. J Abnorm Psychol 117:924–935. doi: 10.1037/a0013600 PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Wang GJ, Volkow ND, Logan J et al (2001) Brain dopamine and obesity. Lancet Lond Engl 357:354–357CrossRefGoogle Scholar
  68. 68.
    Szczypka MS, Rainey MA, Kim DS et al (1999) Feeding behavior in dopamine-deficient mice. Proc Natl Acad Sci U S A 96:12138–12143PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Hnasko TS, Szczypka MS, Alaynick WA et al (2004) A role for dopamine in feeding responses produced by orexigenic agents. Brain Res 1023:309–318. doi: 10.1016/j.brainres.2004.07.051 PubMedCrossRefGoogle Scholar
  70. 70.
    Szczypka MS, Rainey MA, Palmiter RD (2000) Dopamine is required for hyperphagia in Lep(ob/ob) mice. Nat Genet 25:102–104. doi: 10.1038/75484 PubMedCrossRefGoogle Scholar
  71. 71.
    Cannon CM, Palmiter RD (2003) Reward without dopamine. J Neurosci Off J Soc Neurosci 23:10827–10831Google Scholar
  72. 72.
    Gao Q, Horvath TL (2008) Neuronal control of energy homeostasis. FEBS Lett 582:132–141. doi: 10.1016/j.febslet.2007.11.063 PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Berridge KC (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20:1–25. doi:10.1016/0149–7634(95)00033-BPubMedCrossRefGoogle Scholar
  74. 74.
    Cabanac M, Johnson KG (1983) Analysis of a conflict between palatability and cold exposure in rats. Physiol Behav 31:249–253PubMedCrossRefGoogle Scholar
  75. 75.
    Ikeda S, Kang M-I, Ohtake F (2010) Hyperbolic discounting, the sign effect, and the body mass index. J Health Econ 29:268–284. doi: 10.1016/j.jhealeco.2010.01.002 PubMedCrossRefGoogle Scholar
  76. 76.
    Johnson PM, Kenny PJ (2010) Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 13:635–641. doi:10.1038/nn.2519PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Ziauddeen H, Farooqi IS, Fletcher PC (2012) Obesity and the brain: how convincing is the addiction model? Nat Rev Neurosci 13:279–286. doi:10.1038rn3212PubMedCrossRefGoogle Scholar
  78. 78.
    Rangel A, Camerer C, Montague PR (2008) A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci 9:545–556. doi:10.1038/nrn2357PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Kable JW, Glimcher PW (2009) The neurobiology of decision: consensus and controversy. Neuron 63:733–745. doi: 10.1016/j.neuron.2009.09.003 PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Huettel SA, Song AW, McCarthy G (2014) Functional magnetic resonance imaging, Third edition, 3rd edn. Sinauer Associates, Inc., SunderlandGoogle Scholar
  81. 81.
    Daw ND, O’Doherty JP (2014) Chap. 21—Multiple systems for value learning. In: Fehr PWG (ed) Neuroeconomics, 2nd edn. Academic Press, San Diego, pp 393–410CrossRefGoogle Scholar
  82. 82.
    Balleine BW, Dickinson A (1998) Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37:407–419PubMedCrossRefGoogle Scholar
  83. 83.
    Bartra O, McGuire JT, Kable JW (2013) The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76:412–427. doi: 10.1016/j.neuroimage.2013.02.063 PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Clithero JA, Rangel A (2014) Informatic parcellation of the network involved in the computation of subjective value. Soc Cogn Affect Neurosci 9:1289–1302. doi: 10.1093/scan/nst106 PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Hare TA, Malmaud J, Rangel A (2011) Focusing attention on the health aspects of foods changes value signals in vmPFC and improves dietary choice. J Neurosci Off J Soc Neurosci 31:11077–11087. doi:10.1523/JNEUROSCI.6383–10.2011 CrossRefGoogle Scholar
  86. 86.
    Balleine BW, Dickinson A (2000) The effect of lesions of the insular cortex on instrumental conditioning: evidence for a role in incentive memory. J Neurosci Off J Soc Neurosci 20:8954–8964Google Scholar
  87. 87.
    Plassmann H, Doherty JPO, Shiv B, Rangel A (2008) Marketing actions can modulate neural representations of experienced pleasantness. Proc Natl Acad Sci 105:1050–1054. doi: 10.1073/pnas.0706929105 PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324:646–648. doi: 10.1126/science.1168450 PubMedCrossRefGoogle Scholar
  89. 89.
    Gunstad J, Paul RH, Cohen RA et al (2007) Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry 48:57–61. doi: 10.1016/j.comppsych.2006.05.001 PubMedCrossRefGoogle Scholar
  90. 90.
    Wang G-J, Volkow ND, Telang F et al (2009) Evidence of gender differences in the ability to inhibit brain activation elicited by food stimulation. Proc Natl Acad Sci U S A 106:1249–1254. doi: 10.1073/pnas.0807423106 PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Pannacciulli N, Del Parigi A, Chen K et al (2006) Brain abnormalities in human obesity: a voxel-based morphometric study. Neuroimage 31:1419–1425. doi: 10.1016/j.neuroimage.2006.01.047 PubMedCrossRefGoogle Scholar
  92. 92.
    Berthoud H-R, Lenard NR, Shin AC (2011) Food reward, hyperphagia, and obesity. Am J Physiol - Regul Integr Comp Physiol 300:R1266–R1277. doi: 10.1152/ajpregu.00028.2011 PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Ariely D, Norton MI (2009) Conceptual consumption. Annu Rev Psychol 60:475–499. doi: 10.1146/annurev.psych.60.110707.163536 PubMedCrossRefGoogle Scholar
  94. 94.
    Plassmann H, Wager T (2014) How expectancies shape consumption experiences. In: Preston SD, Kringelbach ML, Knutson B, Whybrow PC (eds) Interdiscip. Sci. Consum. MIT Press, Cambridge, pp 219–240Google Scholar
  95. 95.
    Grabenhorst F, Rolls ET, Bilderbeck A (2008) How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex 18:1549–1559. doi: 10.1093/cercor/bhm185 PubMedCrossRefGoogle Scholar
  96. 96.
    McClure SM, Li J, Tomlin D et al (2004) Neural correlates of behavioral preference for culturally familiar drinks. Neuron 44:379–387. doi: 10.1016/j.neuron.2004.09.019 PubMedCrossRefGoogle Scholar
  97. 97.
    Shiv B, Carmon Z, Ariely D (2005) Placebo effects of marketing actions: consumers may get what they pay for. J Mark Res 42:383–393. doi: 10.1509/jmkr.2005.42.4.383 CrossRefGoogle Scholar
  98. 98.
    Sampey BP, Vanhoose AM, Winfield HM et al (2011) Cafeteria diet is a Robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obes Silver Spring Md 19:1109–1117. doi: 10.1038/oby.2011.18 CrossRefGoogle Scholar
  99. 99.
    Maier SU, Makwana AB, Hare TA (2015) Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron 87:621–631. doi: 10.1016/j.neuron.2015.07.005 PubMedCrossRefGoogle Scholar
  100. 100.
    Mann T, Ward A (2007) Attention, self-control, and health behaviors. Curr Dir Psychol Sci 16:280–283. doi:10.1111/j.1467–8721.2007.00520.xCrossRefGoogle Scholar
  101. 101.
    Clegg DJ, Benoit SC, Reed JA et al (2005) Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol 288:R981–R986. doi: 10.1152/ajpregu.00675.2004 PubMedCrossRefGoogle Scholar
  102. 102.
    Kanoski SE, Meisel RL, Mullins AJ, Davidson TL (2007) The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behav Brain Res 182:57–66. doi: 10.1016/j.bbr.2007.05.004 PubMedCentralPubMedCrossRefGoogle Scholar
  103. 103.
    Marteau TM, Hollands GJ, Fletcher PC (2012) Changing human behavior to prevent disease: the importance of targeting automatic processes. Science 337:1492–1495. doi: 10.1126/science.1226918 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Center for Economics and NeuroscienceUniversity of BonnBonnGermany
  2. 2.Department of EpileptologyUniversity Hospital of BonnBonnGermany

Personalised recommendations