Skip to main content
Log in

Dissecting the regional diversity of glial cells by applying -omic technologies

  • Review article
  • Published:
e-Neuroforum

Abstract

Neuronal as well as glial cells contribute to higher order brain functions. Many observations show that neurons and glial cells are not only physically highly intermingled but are physiologically tightly connected and mutually depend at various levels on each other. Moreover, macroglia classes like astrocytes, NG2 cells and oligodendrocytes are not at all homogenous cell populations but do possess a markedly heterogeneity in various aspects similar to neurons. The diversity of differences in morphology, functionality and, cellular activity has been acknowledged recently and will be integrated into a concept of brain function that pictures a neural rather than a puristical neuronal world. With the recent progress in “omic” technologies, an unbiased and exploratory approach toward an enhanced understanding of glial heterogeneity has become possible. Here, we provide an overview on current technical transcriptomic and proteomic approaches used to dissect glial heterogeneity of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548

    Article  CAS  PubMed  Google Scholar 

  2. Biesemann C, Grønborg M, Luquet E, Wichert SP, Bernard V, Bungers SR, Cooper B, Varoqueaux F, Li L, Byrne JA et al (2014) Proteomic screening of glutamatergic mouse brain synaptosomes isolated by fluorescence activated sorting. EMBO J 33:157–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  Google Scholar 

  4. Clarke LE, Barres BA (2013) Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14:311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Dieterich DC, Hodas JJL, Gouzer G, Shadrin IY, Ngo JT, Triller A, Tirrell DA, Schuman EM (2010) In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat Neurosci 13:897–905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Erdmann I, Marter K, Kobler O, Niehues S, Abele J, Müller A, Bussmann J, Storkebaum E, Ziv T, Thomas U et al (2015) Cell-selective labeling of proteomes in Drosophila melanogaster. Nat Commun doi:10.1038/ncomms8521

  8. Geschwind DH, Konopka G (2009) Neuroscience in the era of functional genomics and systems biology. Nature 461:908–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gopalakrishnan G, Awasthi A, Belkaid W, De Faria O, Liazoghli D, Colman DR, Dhaunchak AS (2013) Lipidome and proteome map of myelin membranes. J Neurosci Res 91:321–334

    Article  CAS  PubMed  Google Scholar 

  10. Han D, Jin J, Woo J, Min H, Kim Y (2014) Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation. Proteomics 14:1604–1609

    Article  CAS  PubMed  Google Scholar 

  11. Hodas JJL, Nehring A, Höche N, Sweredoski MJ, Pielot R, Hess S, Tirrell DA, Dieterich DC, Schuman EM (2012) Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT). Proteomics 12:2464–2476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, Verkhratsky A (2008) P2 × 1 and P2 × 5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28:5473–5480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Lobsiger CS, Boillée S, Cleveland DW (2007) Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons. Proc Natl Acad Sci U S A 104:7319–7326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH-C, Han X, Takano T, Wang S, Sim FJ et al (2007) The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27:12255–12266

    Article  CAS  PubMed  Google Scholar 

  15. Malatesta P, Hartfuss E, Götz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    CAS  PubMed  Google Scholar 

  16. Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  CAS  PubMed  Google Scholar 

  17. Pielot R, Smalla K-H, Müller A, Landgraf P, Lehmann A-C, Eisenschmidt E, Haus U-U, Weismantel R, Gundelfinger ED, Dieterich DC (2012) SynProt: a database for proteins of detergent-resistant synaptic protein preparations. Front Synaptic Neurosci 4:1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Qureshi IA, Mehler MF (2012) Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci 13:528–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rossner MJ, Hirrlinger J, Wichert SP, Boehm C, Newrzella D, Hiemisch H, Eisenhardt G, Stuenkel C, von Ahsen O, Nave K-A (2006) Global transcriptome analysis of genetically identified neurons in the adult cortex. J Neurosci 26:9956–9966

    Article  CAS  PubMed  Google Scholar 

  20. Schnell C, Shahmoradi A, Wichert SP, Mayerl S, Hagos Y, Heuer H, Rossner MJ, Hülsmann S (2015). The multispecific thyroid hormone transporter OATP1C1 mediates cell-specific sulforhodamine 101-labeling of hippocampal astrocytes. Brain Struct Funct 220:193–203. doi: 10.1007/s00429-013-0645-0

    Article  PubMed Central  PubMed  Google Scholar 

  21. Skorupa A, Urbach S, Vigy O, King MA, Chaumont-Dubel S, Prehn JHM, Marin P (2013) Angiogenin induces modifications in the astrocyte secretome: relevance to amyotrophic lateral sclerosis. J Proteomics 91:274–285

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela C. Dieterich or Moritz J. Rossner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieterich, D., Rossner, M. Dissecting the regional diversity of glial cells by applying -omic technologies. e-Neuroforum 6, 63–68 (2015). https://doi.org/10.1007/s13295-015-0009-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-015-0009-8

Keywords

Navigation