, Volume 3, Issue 3, pp 74–79 | Cite as

The spotlight of attention: shifting, resizing and splitting receptive fields when processing visual motion

  • S. TreueEmail author
  • J.C. Martinez-Trujillo
Review article


In the visual system receptive fields represent the spatial selectivity of neurons for a given set of visual inputs. Their invariance is thought to be caused by a hardwired input configuration, which ensures a stable ‘labeled line’ code for the spatial position of visual stimuli. On the other hand, changeable receptive fields can provide the visual system with flexibility for allocating processing resources in space. The allocation of spatial attention, often referred to as the spotlight of attention, is a behavioral equivalent of visual receptive fields. It dynamically modulates the spatial sensitivity to visual information as a function of the current attentional focus of the organism. Here we focus on the brain system for encoding visual motion information and review recent findings documenting interactions between spatial attention and receptive fields in the visual cortex of primates. Such interactions create a careful balance between the benefits of invariance with those derived from the attentional modulation of information processing according to the current behavioral goals.


Attention Vision Rhesus monkeys Cortex Receptive field 


Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.


  1. 1.
    Albrecht DG, Hamilton DB (1982) Striate cortex of monkey and cat: contrast response function. J Neurophysiol 48:217–237PubMedGoogle Scholar
  2. 2.
    Anton-Erxleben K, Stephan VM, Treue S (2009) Attention reshapes center-surround receptive field structure in macaque cortical area MT. Cereb Cortex 19(10):2466–2478PubMedCrossRefGoogle Scholar
  3. 3.
    Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189PubMedCrossRefGoogle Scholar
  4. 4.
    Cavanagh P, Alvarez GA (2005) Tracking multiple targets with multifocal attention. Trends Cogn Sci 9(7):349–354PubMedCrossRefGoogle Scholar
  5. 5.
    Ghose GM, Maunsell JH (2008) Spatial summation can explain the attentional modulation of neuronal responses to multiple stimuli in area V4. J Neurosci 28:5115–5126PubMedCrossRefGoogle Scholar
  6. 6.
    Heeger DJ, Simoncelli EP, Movshon JA (1996) Computational models of cortical visual processing. Proc Natl Acad Sci U S A 93:623–627PubMedCrossRefGoogle Scholar
  7. 7.
    Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243PubMedGoogle Scholar
  8. 8.
    Khayat PS, Niebergall R, Martinez-Trujillo JC (2010a) Frequency-dependent attentional modulation of local field potential signals in macaque area MT. J Neurosci 30:7037–7048PubMedCrossRefGoogle Scholar
  9. 9.
    Khayat PS, Niebergall R, Martinez-Trujillo JC (2010b) Attention differentially modulates similar neuronal responses evoked by varying contrast and direction stimuli in area MT. J Neurosci 30:2188–2197PubMedCrossRefGoogle Scholar
  10. 10.
    Lee J, Maunsell JH (2009) A normalization model of attentional modulation of single unit responses. PLoS One 4:e4651PubMedCrossRefGoogle Scholar
  11. 11.
    Martinez-Trujillo J, Treue S (2002) Attentional modulation strength in cortical area MT depends on stimulus contrast. Neuron 35:365–370PubMedCrossRefGoogle Scholar
  12. 12.
    Martinez-Trujillo JC, Treue S (2004) Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr Biol 14:744–751PubMedCrossRefGoogle Scholar
  13. 13.
    McMains SA, Somers DC (2004) Multiple spotlights of attentional selection in human visual cortex. Neuron 42:677–686PubMedCrossRefGoogle Scholar
  14. 14.
    Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229:782–784PubMedCrossRefGoogle Scholar
  15. 15.
    Morawetz C, Baudewig J, Treue S, Dechent P (2010) Diverting attention suppresses human amygdala responses to faces. Front Hum Neurosci 4:226PubMedCrossRefGoogle Scholar
  16. 16.
    Niebergall R, Khayat PS, Treue S, Martinez-Trujillo JC (2011a) Expansion of MT neurons excitatory receptive fields during covert attentive tracking. J Neurosci 31:15499–15510PubMedCrossRefGoogle Scholar
  17. 17.
    Niebergall R, Khayat PS, Treue S, Martinez-Trujillo JC (2011b) Multifocal attention filters targets from distracters within and beyond primate MT neurons’ receptive field boundaries. Neuron 72:1067–1079PubMedCrossRefGoogle Scholar
  18. 18.
    Patzwahl DR, Treue S (2009) Combining spatial and feature-based attention within the receptive field of MT neurons. Vision Res 49:1188–1193PubMedCrossRefGoogle Scholar
  19. 19.
    Reynolds JH, Heeger DJ (2009) The normalization model of attention. Neuron 61:168–185PubMedCrossRefGoogle Scholar
  20. 20.
    Reynolds JH, Pasternak T, Desimone R (2000) Attention increases sensitivity of V4 neurons. Neuron 26:703–714PubMedCrossRefGoogle Scholar
  21. 21.
    Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells analyze the motion of visual patterns. Nat Neurosci 9:1421–1431PubMedCrossRefGoogle Scholar
  22. 22.
    Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vision Res 38:743–761PubMedCrossRefGoogle Scholar
  23. 23.
    Treue S, Maunsell JH (1996) Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382:539–541PubMedCrossRefGoogle Scholar
  24. 24.
    Treue S, Martinez Trujillo JC (1999) Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399:575–579PubMedCrossRefGoogle Scholar
  25. 25.
    Womelsdorf T, Anton-Erxleben K, Pieper F, Treue S (2006) Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nature Neuroscience 9:1156–1160PubMedCrossRefGoogle Scholar
  26. 26.
    Womelsdorf T, Anton-Erxleben K, Treue S (2008) Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. J Neurosci 28:8934–8944PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.German Primate Center, Cognitive Neuroscience LaboratoryGoettingenGermany
  2. 2.Cognitive Neurophysiology LaboratoryMcGill UniversityMontrealCanada

Personalised recommendations