Skip to main content
Log in

Sniffing out social signals

Chemical communication and the vomeronasal organ

  • Review article
  • Published:
e-Neuroforum

Abstract

In most mammals, conspecific chemical communication strategies control complex social and sexual behavior. Just a few years ago, our concept of how the olfactory system is organized to ensure faithful transmission of social information built on the rather simplistic assumption that two fundamentally different classes of stimuli – ‘general’ odors versus ‘pheromones’ – are exclusively detected by either of two sensory structures: the main olfactory epithelium or the vomeronasal organ. A number of exciting recent findings, however, revealed a much more complex and functionally diverse organizational structure of the sense of smell. At least four anatomically segregated olfactory subsystems, some remarkably heterogeneous in their cellular composition, detect distinct, but partially overlapping populations of sensory stimuli. Discerning how subsystem-specific receptor architectures and signaling pathways orchestrate the coding logic of social chemosignals, will ultimately shed new light on the neurophysiological basis of social behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465

    Article  CAS  PubMed  Google Scholar 

  2. Boschat C, Pelofi C, Randin O et al. (2002) Pheromone detection mediated by a V1r vomeronasal receptor. Nat Neurosci 5:1261–1262

    Article  CAS  PubMed  Google Scholar 

  3. Brechbuhl J, Klaey M, Broillet MC (2008) Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321:1092–1095

    Article  PubMed  Google Scholar 

  4. Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475

    Article  CAS  PubMed  Google Scholar 

  5. Brennan PA, Zufall F (2006) Pheromonal communication in vertebrates. Nature 444:308–315

    Article  CAS  PubMed  Google Scholar 

  6. Buck LB (2000) The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–618

    Article  CAS  PubMed  Google Scholar 

  7. Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  CAS  PubMed  Google Scholar 

  8. Casella R, Shariat SF, Monoski MA et al. (2002) Urinary levels of urokinase-type plasminogen activator and its receptor in the detection of bladder carcinoma. Cancer 95:2494–2499

    Article  CAS  PubMed  Google Scholar 

  9. Chamero P, Marton TF, Logan DW et al. (2007) Identification of protein pheromones that promote aggressive behaviour. Nature 450:899–902

    Article  CAS  PubMed  Google Scholar 

  10. Chromek M, Slamova Z, Bergman P et al. (2006) The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641

    Article  CAS  PubMed  Google Scholar 

  11. Davis GW (2006) Homeostatic control of neural activity: from phenomenology to molecular design. Annu Rev Neurosci 29:307–323

    Article  CAS  PubMed  Google Scholar 

  12. Del Punta K, Leinders-Zufall T, Rodriguez I et al. (2002) Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74

    Article  Google Scholar 

  13. Dulac C, Axel R (1995) A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206

    Article  CAS  PubMed  Google Scholar 

  14. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  CAS  PubMed  Google Scholar 

  15. Fulle HJ, Vassar R, Foster DC et al. (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci U S A 92:3571–3575

    Article  CAS  PubMed  Google Scholar 

  16. Gibson AD, Garbers DL (2000) Guanylyl cyclases as a family of putative odorant receptors. Annu Rev Neurosci 23:417–439

    Article  CAS  PubMed  Google Scholar 

  17. Grosmaitre X, Santarelli LC, Tan J et al. (2007) Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat Neurosci 10:348–354

    Article  CAS  PubMed  Google Scholar 

  18. Grosmaitre X, Fuss SH, Lee AC et al (2009) SR1, a mouse odorant receptor with an unusually broad response profile. J Neurosci 29:14545–14552

    Article  CAS  PubMed  Google Scholar 

  19. Gruneberg H (1973) A ganglion probably belonging to the N. terminalis system in the nasal mucosa of the mouse. Z Anat Entwicklungsgesch 140:39–52

    Article  CAS  PubMed  Google Scholar 

  20. Hagendorf S, Fluegge D, Engelhardt C, Spehr M (2009) Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-a-go-go-related gene potassium channels. J Neurosci 29:206–221

    Article  CAS  PubMed  Google Scholar 

  21. Hu J, Zhong C, Ding C et al. (2007) Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–957

    Article  CAS  PubMed  Google Scholar 

  22. Jacobson L (1813) Anatomisk Beskrivelse over et nyt Organ i Huusdyrenes Næse. Veterinær=Selskapets Skrifter [in Danish] 2:209–246

  23. Juilfs DM, Soderling S, Burns F et al. (1999) Cyclic GMP as substrate and regulator of cyclic nucleotide phosphodiesterases (PDEs). Rev Physiol Biochem Pharmacol 135:67–104

    Article  CAS  PubMed  Google Scholar 

  24. Kavaliers M, Choleris E, Pfaff DW (2005) Genes, odours and the recognition of parasitized individuals by rodents. Trends Parasitol 21:423–429

    Article  CAS  PubMed  Google Scholar 

  25. Kelliher KR, Spehr M, Li XH et al (2006) Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur J Neurosci 23:3385–3390

    Article  PubMed  Google Scholar 

  26. Keverne EB (2002) Mammalian pheromones: from genes to behaviour. Curr Biol 12:R807–R809

    Article  CAS  PubMed  Google Scholar 

  27. Kimoto H, Sato K, Nodari F et al. (2007) Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr Biol 17:1879–1884

    Article  CAS  PubMed  Google Scholar 

  28. Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci. 7:548–562

    Google Scholar 

  29. Leinders-Zufall T, Lane AP, Puche AC et al. (2000) Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–796

    Article  CAS  PubMed  Google Scholar 

  30. Leinders-Zufall T, Brennan P, Widmayer Pet al (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037

    Article  CAS  PubMed  Google Scholar 

  31. Leinders-Zufall T, Cockerham RE, Michalakis S et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 104:14507–14512

    Article  CAS  PubMed  Google Scholar 

  32. Leinders-Zufall T, Ishii T, Mombaerts P et al (2009) Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat Neurosci 12:1551–1558

    Article  CAS  PubMed  Google Scholar 

  33. Lewcock JW, Reed RR (2004) A feedback mechanism regulates monoallelic odorant receptor expression. Proc Natl Acad Sci U S A 101:1069–1074

    Article  CAS  PubMed  Google Scholar 

  34. Liberles SD, Buck LB (2006) A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–650

    Article  CAS  PubMed  Google Scholar 

  35. Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci U S A 96:5791–5796

    Article  CAS  PubMed  Google Scholar 

  36. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–561

    Article  CAS  PubMed  Google Scholar 

  37. Malnic B, Hirono J, Sato T, Buck LB (1999) Combinatorial receptor codes for odors. Cell 96:713–723

    Article  CAS  PubMed  Google Scholar 

  38. Margolis FL (1982) Olfactory marker protein (OMP). Scand J Immunol Suppl 9:181–199

    Article  CAS  PubMed  Google Scholar 

  39. Matsunami H, Buck LB (1997) A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:775–784

    Article  CAS  PubMed  Google Scholar 

  40. McClintock TS, Sammeta N (2003) Trafficking prerogatives of olfactory receptors. Neuroreport 14:1547–1552

    Article  CAS  PubMed  Google Scholar 

  41. Meyer MR, Angele A, Kremmer E et al (2000) A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc Natl Acad Sci U S A 97:10595–10600

    Article  CAS  PubMed  Google Scholar 

  42. Migeotte I, Communi D, Parmentier M (2006) Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17:501–519

    Article  CAS  PubMed  Google Scholar 

  43. Mombaerts P (2004) Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5:263–278

    Article  CAS  PubMed  Google Scholar 

  44. Mombaerts P, Wang F, Dulac C et al (1996) Visualizing an olfactory sensory map. Cell 87:675–686

    Article  CAS  PubMed  Google Scholar 

  45. Munger SD (2009) Olfaction: noses within noses. Nature 459:521–522

    Article  CAS  PubMed  Google Scholar 

  46. Munger SD, Leinders-Zufall T, Zufall F (2009) Subsystem organization of the mammalian sense of smell. Annu Rev Physiol 71:115–140

    Article  CAS  PubMed  Google Scholar 

  47. Nodari F, Hsu FF, Fu X et al. (2008) Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J Neurosci 28:6407–6418

    Article  CAS  PubMed  Google Scholar 

  48. Norlin EM, Gussing F, Berghard A (2003) Vomeronasal phenotype and behavioral alterations in G alpha i2 mutant mice. Curr Biol 13:1214–1219

    Article  CAS  PubMed  Google Scholar 

  49. Pankevich DE, Baum MJ, Cherry JA (2004) Olfactory sex discrimination persists, whereas the preference for urinary odorants from estrous females disappears in male mice after vomeronasal organ removal. J Neurosci 24:9451–9457

    Article  CAS  PubMed  Google Scholar 

  50. Restrepo D, Arellano J, Oliva AM et al. (2004) Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice. Horm Behav 46:247–256

    Article  CAS  PubMed  Google Scholar 

  51. Restrepo D, Lin W, Salcedo E et al. (2006) Odortypes and MHC peptides: Complementary chemosignals of MHC haplotype? Trends Neurosci 29:604–609

    Article  CAS  PubMed  Google Scholar 

  52. Riviere S, Challet L, Fluegge D et al (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:574–577

    Article  CAS  PubMed  Google Scholar 

  53. Rodolfo-Masera T (1943) Su l’estizenza di un particulare organo olfacttivo nel setto nasale della cavia e di altri roditori. Arch Ital Anat Embryol 48:157–212

    Google Scholar 

  54. Rodriguez I, Del Punta K, Rothman A et al. (2002) Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat Neurosci 5:134–140

    Article  CAS  PubMed  Google Scholar 

  55. Roppolo D, Vollery S, Kan CD et al. (2007) Gene cluster lock after pheromone receptor gene choice. EMBO J 26:3423–3430

    Article  CAS  PubMed  Google Scholar 

  56. Ryba NJ, Tirindelli R (1997) A new multigene family of putative pheromone receptors. Neuron 19:371–379

    Article  CAS  PubMed  Google Scholar 

  57. Sanguinetti MC, Jiang C, Curran ME et al. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307

    Article  CAS  PubMed  Google Scholar 

  58. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  CAS  PubMed  Google Scholar 

  59. Schwarz JR, Bauer CK (2004) Functions of erg K+ channels in excitable cells. J Cell Mol Med 8:22–30

    Article  CAS  PubMed  Google Scholar 

  60. Serizawa S, Miyamichi K, Nakatani H et al (2003) Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302:2088–2094

    Article  CAS  PubMed  Google Scholar 

  61. Spehr J, Hagendorf S, Weiss J et al (2009) Ca2+-calmodulin feedback mediates sensory adaptation and inhibits pheromone-sensitive ion channels in the vomeronasal organ. J Neurosci 29:2125–2135

    Article  CAS  PubMed  Google Scholar 

  62. Spehr M, Munger SD (2009) Olfactory receptors: G protein-coupled receptors and beyond. J Neurochem 109:1570–1583

    Article  CAS  PubMed  Google Scholar 

  63. Spehr M, Spehr J, Ukhanov K et al (2006) Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63:1476–1484

    Article  CAS  PubMed  Google Scholar 

  64. Stowers L, Marton TF (2005) What is a pheromone? Mammalian pheromones reconsidered. Neuron 46:699–702

    Article  CAS  PubMed  Google Scholar 

  65. Süskind P (1985) Perfume: The story of a murderer.

  66. Tanaka M, Treloar H, Kalb RG et al. (1999) G(o) protein-dependent survival of primary accessory olfactory neurons. Proc Natl Acad Sci U S A 96:14106–14111

    Article  CAS  PubMed  Google Scholar 

  67. Tian H, Ma M (2004) Molecular organization of the olfactory septal organ. J Neurosci 24:8383–8390

    Article  CAS  PubMed  Google Scholar 

  68. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  CAS  PubMed  Google Scholar 

  69. Yang C, Delay RJ (2010) Calcium-activated chloride current amplifies the response to urine in mouse vomeronasal sensory neurons. J Gen Physiol 135:3–13

    Article  CAS  PubMed  Google Scholar 

  70. Young JM, Trask BJ (2007) V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23:212–215

    Article  CAS  PubMed  Google Scholar 

  71. Zhang W, Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900

    Article  CAS  PubMed  Google Scholar 

  72. Zhao H, Ivic L, Otaki JM et al. (1998) Functional expression of a mammalian odorant receptor. Science 279:237–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Work in the author’s laboratory is generously supported by the Emmy Noether-Program of the Deutsche Forschungsgemeinschaft (SP724/2–1), the Mercator Foundation (Junges Kolleg), and within the funding initiative Lichtenberg Professorships of the Volkswagen Foundation.

Conflict of interest

No statement made.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Spehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spehr, M. Sniffing out social signals. e-Neuroforum 1, 9–16 (2010). https://doi.org/10.1007/s13295-010-0002-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13295-010-0002-1

Keywords

Navigation