Skip to main content

Food resilience in a dark catastrophe: A new way of looking at tropical wild edible plants

Abstract

A global sun-blocking catastrophe is more plausible than anyone would like to think. Models have consistently shown the devastating effects these events could have to the world’s agricultural systems for upwards of 15 years. New shade-, drought-, and cool-tolerant crops and more food stockpile sources must be found if there would be any hope of feeding the global population in such a scenario. Wild edible plants (WEPs) are important buffers of food security to indigenous peoples, impoverished peoples, and those in areas with erratic growing seasons across the globe. Here, we suggest WEP species that have the potential to be scaled up through cultivation in post-catastrophe conditions, and the use of foraged food stockpiles to function as stop-gap foods until conventional agriculture returns. We also propose policy initiatives for habitat protection, education programs, and general preparedness.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Adewusi, S.R.A., O.S. Falade, and C. Harwood. 2003. Chemical composition of Acacia colei and Acacia tumida seeds—Potential food sources in the semi-arid tropics. Food Chemistry 80: 187–195. https://doi.org/10.1016/S0308-8146(02)00253-4.

    CAS  Article  Google Scholar 

  • Afoakwa, E.O., D. Polycarp, A.S. Budu, H. Mensah-Brown, and E. Otto. 2013. Variability in biochemical composition and cell wall constituents among seven varieties in Ghanaian Yam (Dioscorea Sp.) Germplasm. African Journal of Food Agriculture Nutrition and Development 13: 8106–8127.

    Article  Google Scholar 

  • Airaksinen, M.M., P. Peura, L. Ala-Fossi-Salokangas, S. Antere, J. Lukkarinen, M. Saikkonen, and F. Stenbäck. 1986. Toxicity of plant material used as emergency food during famines in Finland. Journal of Ethnopharmacology 18: 273–296. https://doi.org/10.1016/0378-8741(86)90006-1.

    CAS  Article  Google Scholar 

  • Ajayi, K., O.T. Adepoju, O.M. Taiwo, S.T. Omojola, and M.E. Aladetuyi. 2018. Nutritional potential of underutilized gum arabic tree seeds (Acacia nilotica) and locust bean seeds (Parkia biglobosa). African Journal of Food Science 12: 196–203. https://doi.org/10.5897/ajfs2017.1650.

    CAS  Article  Google Scholar 

  • Alam, S.A., M. Starr, and B.J.F. Clark. 2013. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. Journal of Arid Environments 89: 67–76. https://doi.org/10.1016/j.jaridenv.2012.10.002.

    Article  Google Scholar 

  • Ali, F., M.A. Assanta, and C. Robert. 2011. Gnetum africanum: A wild food plant from the african forest with many nutritional and medicinal properties. Journal of Medicinal Food 14: 1289–1297. https://doi.org/10.1089/jmf.2010.0327.

    CAS  Article  Google Scholar 

  • Ayemele, A.G., F.J. Muafor, and P. Levang. 2017. Indigenous management of palm weevil grubs (Rhynchophorus phoenicis) for rural livelihoods in Cameroon. Journal of Insects as Food and Feed 3: 43–50. https://doi.org/10.3920/JIFF2016.0002.

    Article  Google Scholar 

  • Bardeen, C.G., R.R. Garcia, O.B. Toon, and A.J. Conley. 2017. On transient climate change at the Cretaceous−Paleogene boundary due to atmospheric soot injections. Proceedings of the National Academy of Sciences of the United States of America 114: E7415–E7424. https://doi.org/10.1073/pnas.1708980114.

    CAS  Article  Google Scholar 

  • Baum, S.D., D.C. Denkenberger, J.M. Pearce, A. Robock, and R. Winkler. 2015. Resilience to global food supply catastrophes. Environment Systems and Decisions 35: 301–313. https://doi.org/10.1007/s10669-015-9549-2.

    Article  Google Scholar 

  • Behera, S.S., and R.C. Ray. 2017. Nutritional and potential health benefits of konjac glucomannan, a promising polysaccharide of elephant foot yam, Amorphophallus konjac K. Koch: A review. Food Reviews International 33: 22–43. https://doi.org/10.1080/87559129.2015.1137310.

    CAS  Article  Google Scholar 

  • Bhat, R., and N. Binti Yahya. 2014. Evaluating belinjau (Gnetum gnemon L.) seed flour quality as a base for development of novel food products and food formulations. Food Chemistry 156: 42–49. https://doi.org/10.1016/j.foodchem.2014.01.063.

    CAS  Article  Google Scholar 

  • Bonatti, M., P. Karnopp, H.M. Soares, and S.A. Furlan. 2004. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chemistry 88: 425–428. https://doi.org/10.1016/j.foodchem.2004.01.050.

    CAS  Article  Google Scholar 

  • Borelli, T., D. Hunter, B. Powell, T. Ulian, E. Mattana, C. Termote, L. Pawera, D. Beltrame, et al. 2020. Born to eat wild: An integrated conservation approach to secure wild food plants for food security and nutrition. Plants 9: 1–37. https://doi.org/10.3390/plants9101299.

    CAS  Article  Google Scholar 

  • Borrell, J.S., M.K. Biswas, M. Goodwin, G. Blomme, T. Schwarzacher, J.S. Heslop-Harrison, A.M. Wendawek, A. Berhanu, et al. 2019. Enset in ethiopia: A poorly characterized but resilient starch staple. Annals of Botany 123: 747–766. https://doi.org/10.1093/aob/mcy214.

    Article  Google Scholar 

  • Bostrom, N., and M.M. Cirkovick, eds. 2008. Global catastrophic risks. New York: Oxford University Press Inc.

    Google Scholar 

  • Bruschi, P., M. Mancini, E. Mattioli, M. Morganti, and M.A. Signorini. 2014. Traditional uses of plants in a rural community of Mozambique and possible links with Miombo degradation and harvesting sustainability. Journal of Ethnobiology and Ethnomedicine 10: 1–22. https://doi.org/10.1186/1746-4269-10-59.

    Article  Google Scholar 

  • Center for International Earth Science Information Network—CIESIN—Columbia University. 2018a. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).

  • Center for International Earth Science Information Network—CIESIN—Columbia University. 2018b. Population Estimation Service, Version 3 (PES-v3). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).

  • Chang, S.T., O.W. Lau, and K.Y. Cho. 1981. The cultivation and nutritional value of Pleurotus sajor-caju. European Journal of Applied Microbiology and Biotechnology 12: 58–62. https://doi.org/10.1007/BF00508120.

    CAS  Article  Google Scholar 

  • Chua, M., T.C. Baldwin, T.J. Hocking, and K. Chan. 2010. Traditional uses and potential health benefits of Amorphophallus konjac K. Koch ex N.E.Br. Journal of Ethnopharmacology 128: 268–278. https://doi.org/10.1016/j.jep.2010.01.021.

    Article  Google Scholar 

  • Commander N.T., J.P. Anankware, O.O. Royal, and D. Obeng-Ofori. 2020. Econometrics of domestication of the African Palm Weevil (Rhynchophorus phoenicis F.) Production as small-scale business in Ghana. In Edible Insects, 1–15. IntechOpen. https://doi.org/10.5772/intechopen.90259.

  • Coupe, J., C.G. Bardeen, A. Robock, and O.B. Toon. 2019. Nuclear winter responses to nuclear war between the united states and russia in the whole atmosphere community climate model version 4 and the goddard institute for space studies ModelE. Journal of Geophysical Research 124: 8522–8543. https://doi.org/10.1029/2019JD030509.

    Article  Google Scholar 

  • Cruz-Garcia, G.S., and P.L. Howard. 2013. “I used to be ashamed”. The influence of an educational program on tribal and non-tribal children’s knowledge and valuation of wild food plants. Learning and Individual Differences 27: 234–240. https://doi.org/10.1016/j.lindif.2013.03.001.

    Article  Google Scholar 

  • Cruz García, G.S. 2006. The mother–Child nexus. Knowledge and valuation of wild food plants in Wayanad, Western Ghats India. Journal of Ethnobiology and Ethnomedicine 2: 1–6. https://doi.org/10.1186/1746-4269-2-39.

    Article  Google Scholar 

  • Das, S. 2016. Amaranthus: A promising crop of future. West Mengal, India: Springer Nature.

    Book  Google Scholar 

  • de Ville de Goyet, C., J. Seaman, and U. Geijer. 1978. The management of nutritional emergencies in large populations. Geneva, Switzerland: World Health Organization.

    Google Scholar 

  • Deli, M., J. Petit, R.M. Nguimbou, E. Beaudelaire Djantou, N. Njintang Yanou, and J. Scher. 2019. Effect of sieved fractionation on the physical, flow and hydration properties of Boscia senegalensis Lam., Dichostachys glomerata Forssk. and Hibiscus sabdariffa L. powders. Food Science and Biotechnology 28: 1375–1389. https://doi.org/10.1007/s10068-019-00597-6.

    CAS  Article  Google Scholar 

  • Denkenberger, D., and J. Pearce. 2014a. No sun: Three sunlight-killing scenarios. In Feeding Everyone No Matter What: Managing food security after global catastrophe, 17–24. Elsevier Science.

  • Denkenberger, D., and J. Pearce. 2014b. Stopgap food production: Fast food. In Feeding Everyone No Matter What: Managing food security after global catastrophe, 41–50. Elsevier Science.

  • Dinerstein, E., D. Olson, A. Joshi, C. Vynne, N.D. Burgess, E. Wikramanayake, N. Hahn, S. Palminteri, et al. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67: 534–545. https://doi.org/10.1093/biosci/bix014.

    Article  Google Scholar 

  • do Nascimento, V. T., M. A. da Silva Vasconcelos, M. I. S. Maciel, and U. P. Albuquerque. 2012. Famine foods of Brazil’s seasonal dry forests: Ethnobotanical and nutritional aspects. Economic Botany 66: 22–34. https://doi.org/10.1007/s12231-012-9187-2.

    Article  Google Scholar 

  • Douglas, J.A., J.M. Follett, and J.E. Waller. 2006. Effect of three plant densities on the corm yield of konjac (Amorphophallus konjac) grown for 1 or 2 years. New Zealand Journal of Crop and Horticultural Science 34: 139–144. https://doi.org/10.1080/01140671.2006.9514398.

    Article  Google Scholar 

  • Doungous, O., E. Minyaka, S.D. Medza-Mve, A.F. Medueghue, M.A. Ngone, C. Simo, and A.M. Nsimi. 2019. Improving propagation methods of Gnetum africanum and G. buchholzianum from cuttings for rapid multiplication, domestication and conservation. Agroforestry Systems 93: 1557–1565. https://doi.org/10.1007/s10457-018-0269-8.

    Article  Google Scholar 

  • Ebenebe, C.I., and V.O. Okpoko. 2016. Preliminary studies on alternative substrate for multiplication of African palm weevil. Journal of Insects as Food and Feed 2: 171–177. https://doi.org/10.3920/JIFF2015.0089.

    Article  Google Scholar 

  • Ebifa-Othieno, E., A. Mugisha, P. Nyeko, and J.D. Kabasa. 2017. Knowledge, attitudes and practices in tamarind (Tamarindus indica L.) use and conservation in Eastern Uganda. Journal of Ethnobiology and Ethnomedicine 13: 1–13. https://doi.org/10.1186/s13002-016-0133-8.

    Article  Google Scholar 

  • Ee, K.Y., J. Zhao, A.U. Rehman, and S. Agboola. 2013. Effects of roasting on the characteristics of Australian wattle (Acacia victoriae Bentham) seed and extracts. International Journal of Food Properties 16: 1135–1147. https://doi.org/10.1080/10942912.2011.578271.

    CAS  Article  Google Scholar 

  • Ellis, E.C., and N. Ramankutty. 2008. Putting people in the map: Anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6: 439–447. https://doi.org/10.1890/070062.

    Article  Google Scholar 

  • Ellis, E.C., K.K. Goldewijk, S. Siebert, D. Lightman, and N. Ramankutty. 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography 19: 589–606. https://doi.org/10.1111/j.1466-8238.2010.00540.x.

    Article  Google Scholar 

  • Eyenga, E.F., E.N. Tang, M.B.L. Achu, R. Boulanger, W.F. Mbacham, and S.A. Ndindeng. 2020. Physical, nutritional, and sensory quality of rice-based biscuits fortified with safou (Dacryodes edulis) fruit powder. Food Science and Nutrition 8: 3413–3424. https://doi.org/10.1002/fsn3.1622.

    CAS  Article  Google Scholar 

  • Eze, S., and G. Orkwor. 2010. Studies on effects of mineral fertilizer, organic manure and cultivar on the yield and storability of yam (Dioscorea rotundata Poir). African Journal of Food Agriculture Nutrition and Development 10: 2756–2771.

    Article  Google Scholar 

  • Fasehah, S.N., and A. Shah. 2017. Effect of using various substrates on cultivation of Pleurotus sajor-caju. Journal of Engineering Science and Technology 12: 1104–1110.

    Google Scholar 

  • Fermont, A.M., P.J.A. van Asten, P. Tittonell, M.T. van Wijk, and K.E. Giller. 2009. Closing the cassava yield gap: An analysis from smallholder farms in East Africa. Field Crops Research 112: 24–36. https://doi.org/10.1016/j.fcr.2009.01.009.

    Article  Google Scholar 

  • Ferraro, V., C. Piccirillo, K. Tomlins, and M.E. Pintado. 2016. Cassava (Manihot esculenta Crantz) and Yam (Dioscorea spp.) crops and their derived foodstuffs: safety, security and nutritional value. Critical Reviews in Food Science and Nutrition 56: 2714–2727. https://doi.org/10.1080/10408398.2014.922045.

    CAS  Article  Google Scholar 

  • Finimundy, T.C., G. Gambato, R. Fontana, M. Camassola, M. Salvador, S. Moura, J. Hess, J.A.P. Henriques, et al. 2013. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity. Nutrition Research 33: 76–84. https://doi.org/10.1016/j.nutres.2012.11.005.

    CAS  Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations. 1993. The world’s forests. In The Challenge of Sustainable Forest Management. Rome, Italy.

  • Frick, S.A., and A. Rodríguez-Pose. 2016. Average city size and economic growth. Cambridge Journal of Regions, Economy and Society 9: 301–318. https://doi.org/10.1093/cjres/rsw013.

    Article  Google Scholar 

  • Galluzzi, G., R. Estrada, V. Apaza, M. Gamarra, Á. Pérez, G. Gamarra, A. Altamirano, G. Cáceres, et al. 2015. Participatory breeding in the Peruvian highlands: Opportunities and challenges for promoting conservation and sustainable use of underutilized crops. Renewable Agriculture and Food Systems 30: 408–417. https://doi.org/10.1017/S1742170514000179.

    Article  Google Scholar 

  • Good, R. 1974. The geography of the flowering plants, 4th ed. London: Longman.

    Google Scholar 

  • Graham, S., ed. 2009. Disrupted cities, 1st ed. New York and London: Taylor & Francis.

    Google Scholar 

  • Gupta, A., S. Sharma, S. Saha, and S. Walia. 2013. Yield and nutritional content of Pleurotus sajor caju on wheat straw supplemented with raw and detoxified mahua cake. Food Chemistry 141: 4231–4239. https://doi.org/10.1016/j.foodchem.2013.06.126.

    CAS  Article  Google Scholar 

  • Hansen, M.C., P.V. Potapov, R. Moore, M. Hancher, S.A. Turubanova, A. Tyukavina, D. Thau, S.V. Stehman, et al. 2013. High-Resolution global maps of 21st-century forest cover change. Science 342: 850–853.

    CAS  Article  Google Scholar 

  • Hayward, B. 2004. The acacia tree: A sustainable resource for Africa. East Malling, UK: NR International Limited; Department for International Development (DFID) Forestry Research Programme (FRP).

  • Hemeda, S., and A. Sonbol. 2020. Sustainability problems of the Giza pyramids. Heritage Science 8: 1–28. https://doi.org/10.1186/s40494-020-0356-9.

    Article  Google Scholar 

  • Hoffmann, J.F., G.P. Zandoná, P.S. dos Santos, C.M. Dallmann, F.B. Madruga, C.V. Rombaldi, and F.C. Chaves. 2017. Stability of bioactive compounds in butiá (Butia odorata) fruit pulp and nectar. Food Chemistry 237: 638–644. https://doi.org/10.1016/j.foodchem.2017.05.154.

    CAS  Article  Google Scholar 

  • Howard, P. 2003. Women and the Plant World. An Exploration. In Women and Plants: Gender Relations in Biodiversity Management and Conservation, 1–38. https://doi.org/10.1663/0013-0001(2004)058.

  • Iloh, C.A., R.N. Isu, and D.D. Kuta. 2013. Explant establishment for callus initiation of a Nigerian endangered leafy vegetable, Gnetum africanum (WILLD). African Journal of Biotechnology 12: 4473–4476. https://doi.org/10.5897/ajb09.068.

    Article  Google Scholar 

  • Koni, T.N.I., C., and Hanim. 2017. Nutritional composition and anti-nutrient content of elephant foot yam (Amorphophallus campanulatus). Pakistan Journal of Nutrition 16: 935–939. https://doi.org/10.3923/pjn.2017.935.939.

    CAS  Article  Google Scholar 

  • Institute of Medicine. 2005. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC: The National Academies Press. https://doi.org/10.17226/10490.

    Book  Google Scholar 

  • Isong, E.U., S.A.R. Adewusi, E.U. Nkanga, E.E. Umoh, and E.E. Offiong. 1999. Nutritional and Phytogeriatological studies of three varieties of Gnetum africanum ('afang’). Food Chemistry 64: 489–493.

    CAS  Article  Google Scholar 

  • Jackson, J., and L. Chiwona-Karltun. 2018. Cassava production, processing and nutrition. In Handbook of vegetables and vegetable processing, ed. M. Siddiq and M.A. Uebersax, 2:613–618.

  • Jagermeyr, J., A. Robock, J. Elliott, C. Muller, L. Xia, N. Khabarov, C. Folberth, E. Schmid, et al. 2020. A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences of the United States of America 117: 7071–7081. https://doi.org/10.1073/pnas.1919049117.

    CAS  Article  Google Scholar 

  • Jansen, P.C.M., C. Van der Wilk, and W.L.A. Hettersheid. 1996. Amorphophallus Blume ex Decaisne. In Plant resources of South-East Asia No. 9: Plants yielding non-seed carbohydrates, ed. M. Flach and F. Rumawas, 45–50. Leiden The Netherlands: Backhuys Publisher.

    Google Scholar 

  • Johnson, D.V. 2010. Tropical palms: 2010 revision. In Non-wood Forest Products Series, 171–200. Rome, Italy: FAO.

  • Kim, T.R., A. Pastuszyn, D.J. Vanderjagt, R.S. Glew, M. Millson, and R.H. Glew. 1997. The nutritional composition of seeds from Boscia senegalensis (Dilo) from the Republic of Niger. Journal of Food Composition and Analysis 10: 73–81. https://doi.org/10.1006/jfca.1996.0515.

    CAS  Article  Google Scholar 

  • Kindermann, G.E., I. McCallum, S. Fritz, and M. Obersteiner. 2008. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fennica 42: 387–396. https://doi.org/10.14214/sf.244.

    Article  Google Scholar 

  • Kuru, P. 2014. Tamarindus indica and its health related effects. Asian Pacific Journal of Tropical Biomedicine 4: 676–681. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0173.

    Article  Google Scholar 

  • Laanisto, L., and Ü. Niinemets. 2015. Polytolerance to abiotic stresses: How universal is the shade-drought tolerance trade-off in woody species? Global Ecology and Biogeography 24: 571–580. https://doi.org/10.1111/geb.12288.

    Article  Google Scholar 

  • Laar, A., A. Kotoh, M. Parker, P. Milani, C. Tawiah, S. Soor, J.P. Anankware, N. Kalra, et al. 2017. An exploration of edible palm weevil larvae (Akokono) as a source of nutrition and livelihood: Perspectives from Ghanaian stakeholders. Food and Nutrition Bulletin 38: 455–467. https://doi.org/10.1177/0379572117723396.

    Article  Google Scholar 

  • Liu, A.G., N.A. Ford, F.B. Hu, K.M. Zelman, D. Mozaffarian, and P.M. Kris-Etherton. 2017. A healthy approach to dietary fats: Understanding the science and taking action to reduce consumer confusion. Nutrition Journal 16: 1–15. https://doi.org/10.1186/s12937-017-0271-4.

    CAS  Article  Google Scholar 

  • Magaia, T., A. Uamusse, I. Sjöholm, and K. Skog. 2013. Dietary fiber, organic acids and minerals in selected wild edible fruits of Mozambique. Springerplus 2: 1–8. https://doi.org/10.1186/2193-1801-2-88.

    CAS  Article  Google Scholar 

  • McClatchey, W.C. 2012. Wild food plants of Remote Oceania. Acta Societatis Botanicorum Poloniae 81: 371–380. https://doi.org/10.5586/asbp.2012.034.

    Article  Google Scholar 

  • Mills, M.J., O.B. Toon, R.P. Turco, D.E. Kinnison, and R.R. Garcia. 2008. Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences of the United States of America 105: 5307–5312. https://doi.org/10.1073/pnas.0710058105.

    Article  Google Scholar 

  • Mutie, F.M., P.C. Rono, V. Kathambi, G.W. Hu, and Q.F. Wang. 2020. Conservation of wild food plants and their potential for combatting food insecurity in Kenya as exemplified by the drylands of Kitui county. Plants 9: 1–25. https://doi.org/10.3390/plants9081017.

    CAS  Article  Google Scholar 

  • Nantanga, K.K.M., and T. Amakali. 2020. Diversification of mopane caterpillars (Gonimbrasia belina) edible forms for improved livelihoods and food security. Journal of Arid Environments 177: 104148. https://doi.org/10.1016/j.jaridenv.2020.104148.

    Article  Google Scholar 

  • National Research Council. 2006a. Amaranth. In Lost crops of Africa: Volume II: Vegetables, II. 35–52. Washington, DC: The National Academies Press.

  • National Research Council. 2006b. Baobab. In Lost crops of Africa: Volume II: Vegetables, II:75–92. Washington, DC: The National Academies Press.

  • National Research Council. 2006c. Enset. In Lost crops of Africa: Volume II: Vegetables, II. 173–190. Washington, DC: The National Academies Press.

  • National Research Council. 2008. Lost crops of Africa: Volume III: Fruits. lost crops of Africa. Vol. 3. Washington, DC: The National Academies Press. https://doi.org/10.17226/11879.

  • Newton, P., A.T. Kinzer, D.C. Miller, J.A. Oldekop, and A. Agrawal. 2020. The number and spatial distribution of forest-proximate people globally. One Earth 3: 363–370. https://doi.org/10.1016/j.oneear.2020.08.016.

    Article  Google Scholar 

  • Niinemets, Ü., and F. Valladares. 2006. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs 76: 521–547.

    Article  Google Scholar 

  • Noumi, G.B., T. Djounja, E. Ngameni, and C. Kapseu. 2014. Influence of the storage time on the fats and oil composition of safou (Dacryodes edulis) dried pulp. International Food Research Journal 21: 1837–1841.

    CAS  Google Scholar 

  • Ocho, D.L., P.C. Struik, L.L. Price, E. Kelbessa, and K. Kolo. 2012. Assessing the levels of food shortage using the traffic light metaphor by analyzing the gathering and consumption of wild food plants, crop parts and crop residues in Konso Ethiopia. Journal of Ethnobiology and Ethnomedicine. https://doi.org/10.1186/1746-4269-8-30.

    Article  Google Scholar 

  • Okoli, P.S.O., and G.F. Wilson. 1986. Response of cassava (Manihot esculenta Crantz) to shade under field conditions. Field Crops Research 14: 349–359. https://doi.org/10.1016/0378-4290(86)90069-9.

    Article  Google Scholar 

  • Oluseyi, E.O., and O.M. Temitayo. 2015. Chemical and functional properties of fermented, roasted and germinated tamarind (Tamarindus indica) seed flours. Nutrition and Food Science 45: 97–111. https://doi.org/10.1108/NFS-11-2013-0131.

    Article  Google Scholar 

  • Omoti, U., and D.A. Okiy. 1987. Characteristics and composition of the pulp oil and cake of the African pear, Dacryodes edulis (G. don) H. J. Lam. Journal of the Science of Food and Agriculture 38: 67–72. https://doi.org/10.1002/jsfa.2740380111.

    CAS  Article  Google Scholar 

  • Omotoso, O.T., and C.O. Adedire. 2007. Nutrient composition, mineral content and the solubility of the proteins of palm weevil, Rhynchophorus phoenicis f. (Coleoptera: Curculionidae). Journal of Zhejiang University Science B 8: 318–322. https://doi.org/10.1631/jzus.2007.B0318.

    CAS  Article  Google Scholar 

  • Ord, T. 2020. The precipice: Existential risk and the future of humanity. New York: Hachette Books.

    Google Scholar 

  • Orwa, C., A. Mutua, R. Kindt, R. Jamnadass, and S. Anthony. 2009. Boscia senegalensis. Agroforestry Database: A tree reference and selection guide version 4.0.

  • Östlund, L., L. Ahlberg, O. Zackrisson, I. Bergman, and S. Arno. 2009. Bark-peeling, food stress and tree spirits the use of pine inner bark for food in Scandinavia and North America. Journal of Ethnobiology 29: 94–112. https://doi.org/10.2993/0278-0771-29.1.94.

    Article  Google Scholar 

  • Parmar, A., B. Sturm, and O. Hensel. 2017. Crops that feed the world: Production and improvement of cassava for food, feed, and industrial uses. Food Security 9: 907–927. https://doi.org/10.1007/s12571-017-0717-8.

    Article  Google Scholar 

  • Pawera, L., A. Khomsan, E.A.M. Zuhud, D. Hunter, A. Ickowitz, and Z. Polesny. 2020. Wild food plants and trends in their use: From knowledge and perceptions to drivers of change in West Sumatra, Indonesia. Foods 9: 1–22. https://doi.org/10.3390/foods9091240.

    CAS  Article  Google Scholar 

  • Pereira, G.S., M. Cipriani, E. Wisbeck, O. Souza, J.O. Strapazzon, and R.M.M. Gern. 2017. Onion juice waste for production of Pleurotus sajor-caju and pectinases. Food and Bioproducts Processing 106: 11–18. https://doi.org/10.1016/j.fbp.2017.08.006.

    CAS  Article  Google Scholar 

  • Prinzo, Z.W., and B. de Benoist. 2002. Meeting the challenges of micronutrient deficiencies in emergency-affected populations. Proceedings of the Nutrition Society 61: 251–257. https://doi.org/10.1079/pns2002151.

    Article  Google Scholar 

  • Pushpalatha, R., and B. Gangadharan. 2020. Is cassava (Manihot esculenta Crantz) a climate “Smart” crop? A review in the context of bridging future food demand gap. Tropical Plant Biology 13: 201–211. https://doi.org/10.1007/s12042-020-09255-2.

    CAS  Article  Google Scholar 

  • Rakonczay, Z. 2002. Biome-specific forest definitions. Framework Convention on Climate Change. United Nations. https://doi.org/10.4337/9781781953174.00049.

  • Rjeibi, I., A. Ben Saad, S. Ncib, S. Souid, and H. Alimi. 2017. Characterization of Amaranthus spinosus collected from different regions: Phytochemical and biological properties. Journal of Food Biochemistry. https://doi.org/10.1111/jfbc.12397.

    Article  Google Scholar 

  • Rosenthal, D.M., R.A. Slattery, R.E. Miller, A.K. Grennan, T.R. Cavagnaro, C.M. Fauquet, R.M. Gleadow, and D.R. Ort. 2012. Cassava about-FACE: Greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels. Global Change Biology 18: 2661–2675. https://doi.org/10.1111/j.1365-2486.2012.02726.x.

    Article  Google Scholar 

  • Salih, O.M., A.M. Nour, and D.B. Harper. 1991. Chemical and nutritional composition of two famine food sources used in Sudan, mukheit (Boscia senegalensis) and maikah (Dobera roxburghi). Journal of the Science of Food and Agriculture 57: 367–377. https://doi.org/10.1002/jsfa.2740570307.

    CAS  Article  Google Scholar 

  • Santosa, E., E. Santosa, N. Sugiyama, and D. Nicolson. 2006. Growth and corm production of Amorphophallus at different shading levels in Indonesia. Japanese Journal of Tropical Agriculture 50: 87–91. https://doi.org/10.11248/jsta1957.50.87.

    Article  Google Scholar 

  • Schlindwein, G., A. Tonietto, A.D. Abichequer, A.C. de Azambuja, B.B. Lisboa, and L.K. Vargas. 2017. Pindo Palm fruit yield and its relationship with edaphic factors in natural populations in Rio Grande do Sul. Ciência Rural 47: 1–7. https://doi.org/10.1590/0103-8478cr20151371.

    Article  Google Scholar 

  • Shaheen, S., M. Ahmad, and N. Haroon. 2017. Edible wild plants: An alternative approach to food security. New York: Springer International Publishing.

    Book  Google Scholar 

  • Shan, N., P. Wang, Q. Zhu, J. Sun, H. Zhang, X. Liu, T. Cao, X. Chen, et al. 2020. Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China. Journal of Integrative Agriculture 19: 2839–2848. https://doi.org/10.1016/S2095-3119(20)63270-1.

    CAS  Article  Google Scholar 

  • Silou, T., D. Massamba, J. Goma Maniongui, G. Maloumbi, and S. Biyoko. 2007. Post-harvest losses by natural softening of safou pulp (Dacryodes edulis) in Congo-Brazzaville. Journal of Food Engineering 79: 392–400. https://doi.org/10.1016/j.jfoodeng.2006.02.004.

    Article  Google Scholar 

  • Smith, N. 2015. Palms and people in the Amazon. In edited by Franco Pedrotti. Geobotany Studies. Springer International Publishing.

  • Takeda, J., and H. Sato. 1993. Multiple subsistence strategies and protein resources of horticulturalists in the Zaire Basin: The Ngandu and the Boyela. Tropical Forests, People and Food 13: 497–504.

    Google Scholar 

  • Takhtajan, A. 1986. Floristic regions of the world. In edited by Arthur Cronquist. Berkley, California: University of California Press.

  • Tata Ngome, P.I., C. Shackleton, A. Degrande, and J.C. Tieguhong. 2017. Addressing constraints in promoting wild edible plants’ utilization in household nutrition: Case of the Congo Basin forest area. Agriculture and Food Security 6: 1–11. https://doi.org/10.1186/s40066-017-0097-5.

    Article  Google Scholar 

  • Tchatchoua, D.T., Z. Tchoundjeu, and R.G. Caspa. 2016. Application of biotechnology for the domestication of Dacryodes edulis (G. Don) H. J. Lam in Cameroon: A review. African Journal of Biotechnology 15: 1177–1183. https://doi.org/10.5897/ajb2016.15245.

    CAS  Article  Google Scholar 

  • Toensmeier, E., R. Ferguson, and M. Mehra. 2020. Perennial vegetables: A neglected resource for biodiversity, carbon sequestration, and nutrition. PLoS ONE 15: 1–19. https://doi.org/10.1371/journal.pone.0234611.

    CAS  Article  Google Scholar 

  • Toon, O.B., A. Robock, and R.P. Turco. 2014. Environmental consequences of nuclear war. AIP Converence Proceedings 65: 65–73. https://doi.org/10.1063/1.4876320.

    Article  Google Scholar 

  • Turner, N.J., Y. Ari, F. Berkes, I. Davidson-Hunt, Z.F. Ertug, and A. Miller. 2009. Cultural management of living trees: An international perspective. Journal of Ethnobiology 29: 237–270. https://doi.org/10.2993/0278-0771-29.2.237.

    Article  Google Scholar 

  • Van Damme, P., and C. Termote. 2008. African botanical heritage for new crop development. Africa Focus 21: 45–64.

    Article  Google Scholar 

  • Vormisto, J. 2002. Palms as rainforest resources: How evenly are they distributed in Peruvian Amazonia? Biodiversity and Conservation 11: 1025–1045. https://doi.org/10.1023/A:1015873223350.

    Article  Google Scholar 

  • Vorstenbosch, T., I. de Zwarte, L. Duistermaat, and T. van Andel. 2017. Famine food of vegetal origin consumed in the Netherlands during World War II. Journal of Ethnobiology and Ethnomedicine 13: 1–15. https://doi.org/10.1186/s13002-017-0190-7.

    Article  Google Scholar 

  • Wanasundera, J.P.D., and G. Ravindran. 1994. Nutritional assessment of yam (Dioscorea alata) tubers. Plant Foods 46: 33–39.

    CAS  Article  Google Scholar 

  • Xia, L., A. Robock, M. Mills, A. Stenke, and I. Helfand. 2015. Decadal reduction of Chinese agriculture after a regional nuclear war. Earth’s Future 3: 37–48. https://doi.org/10.1002/2014EF000283.

    Article  Google Scholar 

  • Yemata, G. 2020. Ensete ventricosum: A Multipurpose Crop against Hunger in Ethiopia. The Scientific World Journal. https://doi.org/10.1155/2020/6431849.

    Article  Google Scholar 

  • Youzbachi, N., W. Elfalleh, N. Tlili, S. Gregoire, O. Berdeaux, C. Salles, S. Triki, M.L. Khouja, et al. 2012. Unexploited Acacia cyanophylla seeds: Potential food sources of ω6 fatty acids and antioxidants? Journal of the Science of Food and Agriculture 92: 1526–1532. https://doi.org/10.1002/jsfa.4737.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the members of the Penn State Food Resilience in the Face of Catastrophic Global Events research team for their advice and ideas. This work was made possible by a grant from Open Philanthropy.

Funding

Funding was provided by Open Philanthropy, [Penn State University—Research on Emergency Food Resilience (Charles Anderson) (2020)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Jefferson Winstead.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 286 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Winstead, D.J., Jacobson, M.G. Food resilience in a dark catastrophe: A new way of looking at tropical wild edible plants. Ambio (2022). https://doi.org/10.1007/s13280-022-01715-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13280-022-01715-1

Keywords

  • Catastrophe
  • Food resilience
  • Nuclear winter
  • Tolerant crops
  • Wild edible plants