Skip to main content

Advertisement

Log in

Exploring sustainable solutions for the water environment in Chinese and Southeast Asian cities

  • Review
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Water is essential for human activities and economic development, and the water environment significantly influences ecological balance and global climate. China and Southeast Asia are the most populous areas in the world, and their water resources are deteriorating day by day. We focus on five representative cities such as, Beijing, Jakarta, Hanoi, Kathmandu and Manila to investigate water-environmental problems with the ultimate goal of providing recommendations for sustainable urban water management. The study found that (1) the water environment of all cities has been polluted to varying levels, while the pollution has improved in Beijing and Jakarta, and the situation in other regions is severe. (2) The aquatic biodiversity has reduced, and its pollution is mainly caused by organic pollutants and decreasing river flow. In addition, numerous people live in megacities without access to clean surface water or piped drinking water, which greatly increases the use of groundwater. Further, frequent floods in the world leads to serious damage to urban infrastructure and further deterioration of water environment quality. To address these problems, countries and organizations have begun to construct wastewater treatment plants and develop water-saving technology to ensure healthy and sustainable development of water environment. The results and practical recommendations of this study can provide scientific insights for future research and management strategies to address water quality challenges during ongoing policy debates and decision-making processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abad, R., T. Schwanen, and A.M. Fillone. 2020. Commuting behavior adaptation to flooding: An analysis of transit users’ choices in Metro Manila. Travel Behaviour and Society 18: 46–57. https://doi.org/10.1016/j.tbs.2019.10.001.

    Article  Google Scholar 

  • Adhikari, B., S. Shrestha, and N.M. Shakya. 2019a. Future urban water crisis in mountain regions: Example of Kathmandu valley, Nepal: Methods, approaches and practices, 169–182. Singapore: Springer.

    Google Scholar 

  • Adhikari, B.R., S.D. Shrestha, and N.M. Shakya. 2019b. Future urban water crisis in mountain regions: Example of Kathmandu Valley, Nepal: Methods approaches and practices Urban drought. Singapore: Springer.

    Google Scholar 

  • Affairs, B.M.B.o.W. 2018. Beijing water resources bulletin. Beijing Municipal Bureau of water affairs, Beijing. (In Chinese)

  • Agenais, D.D., I. Thomas, and S. Paquette. 2017. Siting green stormwater infrastructure in a neighbourhood to maximise secondary benefits: Lessons learned from a pilot project. Landscape Research 42: 1–16.

    Google Scholar 

  • Alcamo, J., M. Flörke, and M. Märker. 2007. Future long-term changes in global water resources driven by socio-economic and climatic changes. Hydrological Sciences Journal 52: 247–275. https://doi.org/10.1623/hysj.52.2.2470262-6667.

    Article  Google Scholar 

  • Amira, S., W. Astono, and D. Hendrawan. 2018. Study of pollution effect on water quality of Grogol River, DKI Jakarta. IOP Conference Series: Earth and Environmental Science 106: 012023. https://doi.org/10.1088/1755-1315/106/1/012023.

    Article  Google Scholar 

  • Asdak, C., and S. Supian. 2018. Watershed management strategies for flood mitigation: A case study of Jakarta’s flooding. Weather & Climate Extremes. https://doi.org/10.1016/j.wace.2018.08.002.

    Article  Google Scholar 

  • Babel, M.S., S.P. Bhusal, S.M. Wahid, and A. Agarwal. 2014. Climate change and water resources in the Bagmati River Basin, Nepal. Theoretical and Applied Climatology 115: 639–654.

    Article  Google Scholar 

  • Bajracharya, R.M., N. Dahal, K.R. Neupane, V. Singh, and R. Habeeb. 2019. Urban water security challenges in the Nepal and Indian Himalaya in the context of climate change. Resources and Environment 9: 9–18.

    Google Scholar 

  • Bankoff, G. 2010. Constructing vulnerability: The historical, natural and social generation of flooding in metropolitan Manila. Disasters 27: 224–238. https://doi.org/10.1111/1467-7717.00230.

    Article  Google Scholar 

  • Bao, P.N., T. Aramaki, M. Otaki, and Y. Otaki. 2013. Water demand management: A strategic approach towards a sustainable urban water system in Hanoi. Journal of Water and Environment Technology 11: 403–418. https://doi.org/10.2965/jwet.2013.403.

    Article  Google Scholar 

  • Bartram, J. 2010. Regional and global costs of attaining the water supply and sanitation target (target 10) of the millenium development goals. Bulletin of the World Health Organization 86: 13–19.

    Google Scholar 

  • Batubara, B., M. Kooy, and M. Zwarteveen. 2018. Uneven urbanisation: Connecting flows of water to flows of labour and capital through Jakarta’s flood infrastructure. Antipode. https://doi.org/10.1111/anti.12401.

    Article  Google Scholar 

  • Bierkens, M., and Y. Wada. 2019. Non-renewable groundwater use and groundwater depletion: A review. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab1a5f.

    Article  Google Scholar 

  • Boquet, Y. 2015. Metro Manila’s challenges: Flooding, housing and mobility. Tokyo: Springer.

    Google Scholar 

  • Botequilha-Leito, A., and E. Díaz-Varela. 2020. Performance based planning of complex urban social-ecological systems: The quest for sustainability through the promotion of resilience. Sustainable Cities and Society 56: 102089. https://doi.org/10.1016/j.scs.2020.102089.

    Article  Google Scholar 

  • Bui, D.D., A. Kawamura, T.N. Tong, H. Amaguchi, and T.M. Trinh. 2012. Aquifer system for potential groundwater resources in Hanoi, Vietnam. Hydrological Processes 26 (6): 932–946. https://doi.org/10.1002/hyp.83050885-6087.

    Article  Google Scholar 

  • Bui, N.T., A. Kawamura, H. Amaguchi, D.D. Bui, N.T. Truong, and K. Nakagawa. 2018. Social sustainability assessment of groundwater resources: A case study of Hanoi, Vietnam. Ecological Indicators 93: 1034–1042. https://doi.org/10.1016/j.ecolind.2018.06.0051470-160x.

    Article  Google Scholar 

  • Cao, A., M. Esteban, V. Valenzuela, M. Onuki, H. Takagi, N.D. Thao, and N. Tsuchiya. 2021. Future of Asian Deltaic Megacities under sea level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Current Opinion in Environmental Sustainability 50: 87–97.

    Article  Google Scholar 

  • Carrasco, S., and N. Dangol. 2019. Citizen-government negotiation: Cases of in riverside informal settlements at flood risk. International Journal of Disaster Risk Reduction 38: 101195. https://doi.org/10.1016/j.ijdrr.2019.101195.

    Article  Google Scholar 

  • CBS Central Bureau of Statistics, N. 1998. A compendium on environment statistics 1998.(Government Document)

  • CCTV. 2014. Beijing starts agricultural structure adjustment, some areas no longer grow wheat, Contemporary animal husbandry. pp. 21–21

  • Chaussard, E., F. Amelung, H. Abidin, and S.H. Hong. 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment 128: 150–161.

    Article  Google Scholar 

  • Chen Yun, S.J., and Xu. Jun. 2012. Analysis and Thinking on the extreme of Beijing 721 heavy rain (I) observation analysis and thinking. Meteorological 10: 97–108 ((in Chinese)).

    Google Scholar 

  • Chen, Z., H. Wang, and X. Qi. 2013. Pricing and water resource allocation scheme for the South-to-North water diversion project in China. Water Resources Management 27 (5): 1457–1472.

    Article  Google Scholar 

  • Chhetri, T.B., Y.P. Dhital, Y. Tandong, L.P. Devkota, and B. Dawadi. 2020. Observations of heavy rainfall and extreme flood events over Banke-Bardiya districts of Nepal in 2016–2017. Progress in Disaster Science 6: 100074. https://doi.org/10.1016/j.pdisas.2020.10007425900617.

    Article  Google Scholar 

  • Clemente, R., C. David, A. Inocencio, R. Abracosa. 2001. Groundwater supply in Metro Manila: Distribution, environmental and economic assessment. Philippine Institute for Development Studies, Discussion Papers. http://serp-p.pids.gov.ph/serp-p/download.php?d=172&s=3

  • Delinom, R.M. 2011. The proposed groundwater management for the Greater Jakarta Area, Indonesia, groundwater and subsurface environments, 113–125. New York: Springer.

    Google Scholar 

  • Delinom, R.M., A. Assegaf, H.Z. Abidin, M. Taniguchi, D. Suherman, R.F. Lubis, and E. Yulianto. 2009. The contribution of human activities to subsurface environment degradation in Greater Jakarta Area, Indonesia. Science of the Total Environment 407: 3129–3141. https://doi.org/10.1016/j.scitotenv.2008.10.0030048-9697.

    Article  CAS  Google Scholar 

  • Dhital, M.R. 2015. Geology of the Nepal Himalaya, Regional perspective of the classic collided orogene. New York: Springer International Publishing.

    Book  Google Scholar 

  • Dhital, Y.P., and R.B. Kayastha. 2013. Frequency analysis, causes and impacts of flooding in the Bagmati River Basin, Nepal. Journal of Flood Risk Management 6: 253–260. https://doi.org/10.1111/jfr3.12013.

    Article  Google Scholar 

  • Dingning Zheng, W.G. 2013. Emergency management from urban waterlogging—Thinking based on Beijing 721 waterlogging. Chinese Foreign Investment 000: 246–246 ((in Chinese)).

    Google Scholar 

  • Duan, W., Y. Chen, S. Zou, and D. Nover. 2019. Managing the water-climate-food nexus for sustainable development in Turkmenistan. Journal of Cleaner Production 220: 212–224. https://doi.org/10.1016/j.jclepro.2019.02.040.

    Article  Google Scholar 

  • Duan, W., N. Hanasaki, H. Shiogama, Y. Chen, and Y. Wang. 2019. Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations. Journal of Climate. https://doi.org/10.1175/JCLI-D-18-0465.1.

    Article  Google Scholar 

  • DWIDP, D.o.W.I.D.P. 2005. Preparation of water induced hazard maps of Bagmati River basin.

  • Elvanidi, A., N. Katsoulas, T. Bartzanas, K.P. Ferentinos, and C. Kittas. 2017. Crop water status assessment in controlled environment using crop reflectance and temperature measurements. Precision Agriculture 18 (3): 1–18. https://doi.org/10.1007/s11119-016-9492-3.

    Article  Google Scholar 

  • Erban, L.E., S.M. Gorelick, H.A. Zebker, and S. Fendorf. 2013. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proceedings of the National Academy of Sciences of the United States of America 110 (34): 13751–13756.

    Article  CAS  Google Scholar 

  • Fadly, M., T.E. Prayogi, F. Mohamad, D.Y. Zulfaris, M.W. Memed, A. Daryanto, F. Abdillah, E.M. Nasution, et al. 2017. Groundwater quality assessment in Jakarta Capital region for the safe drinking water. Iop Conference 180: 012063. https://doi.org/10.1088/1757-899X/180/1/012063.

    Article  Google Scholar 

  • Goodarzi, L., M.E. Banihabib, and A. Roozbahani. 2019. A decision-making model for flood warning system based on ensemble forecasts. Journal of Hydrology 573: 207–219.

    Article  Google Scholar 

  • Gorme, J., M. Maniquiz-Redillas, P. Song, and L.-H. Kim. 2010. The water quality of the Pasig river in the City of Manila, Philippines: Current status, management and future recovery. Environmental Engineering Research 15: 173–179. https://doi.org/10.4491/eer.2010.15.3.173.

    Article  Google Scholar 

  • Guragai, B., S. Takizawa, T. Hashimoto, and K. Oguma. 2017. Effects of inequality of supply hours on consumers’ coping strategies and perceptions of intermittent water supply in Kathmandu Valley, Nepal. Science of the Total Environment 599–600: 431–441. https://doi.org/10.1016/j.scitotenv.2017.04.1820048-9697.

    Article  Google Scholar 

  • Ha, Q.K., K. Kim, N.L. Phan, T.H. Phung, and N.P. Chu. 2019. A hydrogeological and geochemical review of groundwater issues in southern Vietnam. Geosciences Journal 23 (6): 1005–1023.

    Article  CAS  Google Scholar 

  • Hammond, M.J., A.S. Chen, S. Djordjevic, D. Butler, and O. Mark. 2015. Urban flood impact assessment: A state-of-the-art review. Urban Water Journal 12 (1–2): 14–29.

    Article  Google Scholar 

  • Hanoi Water Limited Company. 2016. Temporary water shut-off schedule.

  • Hao, Aibing, and Yilong Zhang. 2018. Review: Groundwater resources and related environmental issues in China. Hydrogeology Journal 26 (5): 1325–1337. https://doi.org/10.1007/s10040-018-1787-1.

    Article  Google Scholar 

  • Hao, A., Y. Zhang, E. Zhang, Z. Li, J. Yu, H. Wang, J. Yang, and Y. Wang. 2018. Groundwater resources and related environmental issues in China. Hydrogeology Journal 26 (5): 1325–1337.

    Article  Google Scholar 

  • Hu, M., X. Zhang, Y. Li, H. Yang, and K. Tanaka. 2019. Flood mitigation performance of low impact development technologies under different storms for retrofitting an urbanized area. Journal of Cleaner Production 222: 373–380. https://doi.org/10.1016/j.jclepro.2019.03.044.

    Article  Google Scholar 

  • Huang, X.R., J.W. Zhao, and P.P. Yang. 2015. Wet-dry runoff correlation in Western Route of South-to-North Water Diversion Project, China. Journal of Mountain Science 12: 592–603.

    Article  Google Scholar 

  • Ignatieva, M., C. Meurk, and G. Stewart. 2008. Low impact urban design and development (LIUDD): Matching urban design and urban ecology. Landscape Architecture Group: Lincoln University.

    Google Scholar 

  • Iliman, V.A. 1992. Department of Environment and Natural Resources. (Government Document)

  • Irawan, D.E., H. Silaen, P. Sumintadireja, R. Lubis, B. Brahmantyo, and D. Puradimaja. 2015. Groundwater–surface water interactions of Ciliwung River streams, segment Bogor-Jakarta, Indonesia. Environmental Earth Sciences 73: 1295–1302. https://doi.org/10.1007/s12665-014-3482-41866-6299.

    Article  CAS  Google Scholar 

  • Jalilov, S.-M., M. Kefi, P. Kumar, Y. Masago, and B.K. Mishra. 2018. Sustainable urban water management: Application for integrated assessment in Southeast Asia. Sustainability 10: 122. https://doi.org/10.3390/su100101222071-1050.

    Article  Google Scholar 

  • Jensen, O., and A. Khalis. 2020. Urban water systems: Development of micro-level indicators to support integrated policy. PLoS ONE 15 (2): e0228295. https://doi.org/10.1371/journal.pone.0228295.

    Article  CAS  Google Scholar 

  • Jha, P.K. 1995. Pollution preventing efforts and strategies for the Kathmandu valley. Water, Air, and Soil Pollution 85 (4): 2643–2648. https://doi.org/10.1007/BF011862331573-2932.

    Article  CAS  Google Scholar 

  • Johnston, B.R. 2011. Water, cultural diversity, and global environmental change. Water, Cultural Diversity, and Global Environmental Change. https://doi.org/10.1007/978-94-007-1774-9.

    Article  Google Scholar 

  • JS company (VIW ASE) and Hanoi people's Committee (HPC), H., Vietnam. 2012. Hanoi capital urban water supply master plan to 2030 and vision to 2050, Report of Vietnam water sanitation and environment.

  • Kaneko, S., and T. Toyota. 2011. Long-term urbanization and land subsidence in asian megacities: An indicators system approach. Long-term urbanization and land subsidence in asian megacities: An indicators system approach

  • Keeler, B.L., P. Hamel, T. McPhearson, M.H. Hamann, M.L. Donahue, K.A. Meza Prado, K.K. Arkema, et al. 2019. Social–ecological and technological factors moderate the value of urban nature. Nature Sustainability 2: 29–38. https://doi.org/10.1038/s41893-018-0202-12398-9629.

    Article  Google Scholar 

  • Kooy, M., C.T. Walter, and I. Prabaharyaka. 2016. Inclusive development of urban water services in Jakarta: The role of groundwater. Habitat International. https://doi.org/10.1016/j.habitatint.2016.10.006.

    Article  Google Scholar 

  • Kooy, M., C.T. Walter, and I. Prabaharyaka. 2018. Inclusive development of urban water services in Jakarta: The role of groundwater. Habitat International 73: 109–118. https://doi.org/10.1016/j.habitatint.2016.10.0060197-3975.

    Article  Google Scholar 

  • Kosasih, B.R., S. Samsuhadi, and N.I. Astuty. 2009. Kualitas Air Tanah Di Kecamatan Tebet Jakarta Selatan Ditinjau Dari Pola Sebaran Escherichia coli. Jurnal Teknologi Lingkungan Universitas Trisakti 5 (1): 1.

    Google Scholar 

  • Kron, W. 2015. Flood disasters—A global perspective. Water Policy 17 (1): 6–24. https://doi.org/10.2166/wp.2015.001.

    Article  Google Scholar 

  • Kumar, P., Y. Masago, B.K. Mishra, and K. Fukushi. 2018. Evaluating future stress due to combined effect of climate change and rapid urbanization for Pasig-Marikina River, Manila. Groundwater for Sustainable Development 6: 227–234. https://doi.org/10.1016/j.gsd.2018.01.0042352-801X.

    Article  Google Scholar 

  • Kundzewicz, K., H. Seneviratne, and Sherstyukov. 2014. Flood risk and climate change—Global and regional perspectives. Hydrological Sciences Journal/journal Des Sciences Hydrologiques. https://doi.org/10.1080/02626667.2013.857411.

    Article  Google Scholar 

  • Kuroda, K., T. Hayashi, A.T. Do, V.D. Canh, T. Nga, A. Funabiki, and S. Takizawa. 2017. Groundwater recharge in suburban areas of Hanoi, Vietnam: Effect of decreasing surface-water bodies and land-use change. Hydrogeology Journal 25 (3): 727–742. https://doi.org/10.1007/s10040-016-1528-2.

    Article  CAS  Google Scholar 

  • Le, D.N., H. Anh, T. Hoang, H. Nguyen, and T. Le. 2020. Antibiotic and antiparasitic residues in surface water of urban rivers in the Red River Delta (Hanoi, Vietnam): Concentrations, profiles, source estimation, and risk assessment. Environmental Science and Pollution Research 28: 10622–10632.

    Google Scholar 

  • Le, V., D.N. Cao, and P.N. Xuan. 2017. The overview of water pollution in the world. International Journal of Scientific & Technology Research 6 (08): 2277–8616.

    Google Scholar 

  • Li, P., R. Tian, C. Xue, and J. Wu. 2017. Progress, opportunities, and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollution Research International 24: 13224–13234. https://doi.org/10.1007/s11356-017-8753-70944-1344.

    Article  Google Scholar 

  • Ling, N.T. 2015. Cost comparison of seawater for toilet flushing and wastewater recycling. Water Policy 17 (1): 83.

    Article  Google Scholar 

  • Liu, J.H., D.Y. Qin, H. Wang, and M. Wang. 2010. Dualistic water cycle pattern and its evolution in Haihe River basin. Chinese Science Bulletin 2010: 1688–1697. https://doi.org/10.1007/s11434-010-3043-5.

    Article  Google Scholar 

  • Long, D., W. Yang, B.R. Scanlon, J. Zhao, D. Liu, P. Burek, Y. Pan, L. You, et al. 2020. South-to-North Water diversion stabilizing Beijing’s groundwater levels. Nature Communications 11: 3665. https://doi.org/10.1038/s41467-020-17428-62041-1723.

    Article  CAS  Google Scholar 

  • Luo, A.S.S.P. 2015. Overview of Jakarta water-related environmental challenges.

  • Luo, P., S. Kang, Z. Apip, and D. Nover. 2019. Water quality trend assessment in Jakarta: A rapidly growing Asian megacity. PLoS ONE 14 (7): e0219009. https://doi.org/10.1371/journal.pone.0219009.

    Article  CAS  Google Scholar 

  • Luo, P., D. Mu, H. Xue, and T. Ngo-Duc. 2018. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Scientific Reports. https://doi.org/10.1038/s41598-018-30024-5.

    Article  Google Scholar 

  • Lyu, J., P. Luo, S. Mo, M. Zhou, B. Shen, L. Fan, and D. Nover. 2019. Towards sustainable water regulation based on a distributed hydrological model for a heavily polluted urban river, northwest China. Hydrology Research. https://doi.org/10.2166/nh.2019.005.

    Article  Google Scholar 

  • March. 2009. Bagmati action plan (2009–2014) DRAFT REPORT. (Report)

  • Mateo-Sagasta, J., S.M. Zadeh, H. Turral, and J. Burke. 2017. Water pollution from agriculture: A global review. Executive summary. FAO and IWMI.

  • McElwee, P. 2004. You say illegal, i say legal. Journal of Sustainable Forestry 19: 97–135. https://doi.org/10.1300/J091v19n01_061054-9811.

    Article  Google Scholar 

  • Media, E. 2005. Australian runoff quality: A guide to water sensitive urban design.

  • Miao, Q., D. Yang, H. Yang, and Z. Li. 2016. Establishing a rainfall threshold for flash flood warnings in China’s mountainous areas based on a distributed hydrological model. Journal of Hydrology 541: 371–386.

    Article  Google Scholar 

  • Mirza, M., R.A. Warrick, and N.J. Ericksen. 2003. The implications of climate change on floods of the Ganges, Brahmaputra and Meghna Rivers in Bangladesh. Climatic Change 57: 287–318.

    Article  Google Scholar 

  • Mitchell, G. 2005. Mapping hazard from urban non-point pollution: A screening model to support sustainable urban drainage planning. Journal of Environmental Management 74 (1): 1–9.

    Article  CAS  Google Scholar 

  • Mu, D., P. Luo, J. Lyu, M. Zhou, A. Huo, W. Duan, D. Nover, B. He, et al. 2020. Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. Journal of Flood Risk Management. https://doi.org/10.1111/jfr3.12668.

    Article  Google Scholar 

  • Munasinghe, M. 1993. Water supply and environmental management.

  • Nagabhatla, N., P. Pouramin, R. Brahmbhatt, C. Fioret, and V. Smakhtin. 2020. Water and migration: A global overview, UNU-INWEH. Institute for Water environment and healthy. http://inweh.unu.edu/publications/

  • Noviandi, T.U.Z., R.L. Kaswanto, and H.S. Arifin. 2017. Riparian landscape management in the midstream of Ciliwung River as supporting Water Sensitive Cities program with priority of productive landscape. IOP Conference 91: 012033. https://doi.org/10.1088/1755-1315/91/1/012033.

    Article  Google Scholar 

  • Pandey, C.L. 2021. Managing urban water security: Challenges and prospects in Nepal. Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development 23: 241–257.

    Article  Google Scholar 

  • Pandey, V.P., S.K. Chapagain, and F. Kazama. 2010. Evaluation of groundwater environment of Kathmandu Valley. Environmental Earth Ences 60: 1329–1342.

    Article  Google Scholar 

  • Pandey, V.P., S.K. Chapagain, and F. Kazama. 2010. Evaluation of groundwater environment of Kathmandu Valley. Environmental Earth Sciences 60: 1329–1342. https://doi.org/10.1007/s12665-009-0263-61866-6299.

    Article  Google Scholar 

  • Pandey, V.P., and F. Kazama. 2011. Hydrogeologic characteristics of groundwater aquifers in Kathmandu Valley, Nepal. Environmental Earth Sciences 62: 1723–1732.

    Article  Google Scholar 

  • Pant, B.R. 2011. Ground water quality in the Kathmandu valley of Nepal. Environmental Monitoring & Assessment 178: 477–485. https://doi.org/10.1007/s10661-010-1706-y.

    Article  CAS  Google Scholar 

  • Parmeshwar, U., I. Hiroshi, T. Bhesh, and S. Narendra. 2016. The status of domestic water demand: Supply deficit in the Kathmandu Valley, Nepal. Water 8: 196–196. https://doi.org/10.3390/w8050196.

    Article  Google Scholar 

  • Pathak, D.R., A. Hiratsuka, I. Awata, and L. Chen. 2009. Groundwater vulnerability assessment in shallow aquifer of Kathmandu Valley using GIS-based DRASTIC model. Environmental Geology 57: 1569–1578. https://doi.org/10.1007/s00254-008-1432-81432-0495.

    Article  CAS  Google Scholar 

  • Pham Ngoc Bao, T.A., and O.T.A.K.I. Masahiro. 2013. Water demand management: A strategic approach towards a sustainable urban water system in Hanoi. Journal of Water and Environment Technology 11: 5. https://doi.org/10.2965/jwet.2013.403.

    Article  Google Scholar 

  • Philippine Atmospheric, G.a.A.S.A.P. 2011. Scientific normals: Rainfall normal values. (Government Document)

  • Pour, S.H., A.K.A. Wahab, S. Shahid, M. Asaduzzaman, and A. Dewan. 2020. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustainable Cities and Society 62: 102373. https://doi.org/10.1016/j.scs.2020.102373.

    Article  Google Scholar 

  • Programme, U.N.E. 2016. Global Material Flows and Resource Productivity: Assessment Report for the UNEP International ResourcePanel.

  • Raflores, L.S., and R.K. Regmi. 2015. Understanding the water and urban environment of a megacity: The case of Metro Manila, Philippines.

  • Rana, K. 2011. Uses of ground water in Nepal.

  • Rian, M.S.P., A. Auzan, N. Farika, E.W.T. Nonik, P. Ca hyo Nugroho, R. Apriatresnayanto, D. Roosmini, K. Pribadi, et al. 2018. Value engineering application for conceptual design of seawater desalination plant in Jakarta. MATEC Web of Conferences 147: 06005.

    Article  Google Scholar 

  • Rukmana, D. 2015. The change and transformation of Indonesian spatial planning after Suharto’s New Order Regime: The case of the Jakarta Metropolitan Area. International Planning Studies 20: 350–370.

    Article  Google Scholar 

  • Sarah, P., and Church. 2015. Exploring Green Streets and rain gardens as instances of small scale nature and environmental learning tools. Landscape and Urban Planning. https://doi.org/10.1016/j.landurbplan.2014.10.021.

    Article  Google Scholar 

  • Scaparra, M.P., N.C. Chinh, T. Dang, and T.H. Tran. 2019. Community perceptions of social, economic and environmental impacts of flooding in central districts of Hanoi, Vietnam. Proceedings of the British Academy. https://doi.org/10.5871/jba/007s2.137.

    Article  Google Scholar 

  • Shao, J., J. Liu, Q. Zhang, R. Wang, Z. Li, L. Wang, and Q. Yang. 2016. Chapter 16 - Groundwater environment in Beijing, China. In Groundwater environment in asian cities, ed. S. Shrestha, V.P. Pandey, B.R. Shivakoti, and S. Thatikonda, 345–381. Oxford: Butterworth-Heinemann.

    Chapter  Google Scholar 

  • Shimizu, S.J.H.S. 2013. An overview of the effects of urbanization on the quantity and quality of groundwater in South Asian megacities. Limnology 14 (2): 135–145.

    Article  Google Scholar 

  • Shrestha, R.R. 2009. Rainwater harvesting and groundwater recharge for water storage in the Kathmandu Valley. Sustainable Mountain Development. http://www.icimod.org

  • Shrestha, S.R., G.N. Tripathi, and D. Laudari. 2018. Groundwater resources of Nepal: An overview. Groundwater of South Asia. https://doi.org/10.1007/978-981-10-3889-1_11.

    Article  Google Scholar 

  • Simarmata, H.A. 2018. Planning institutions of adaptation to flood in Jakarta, Phenomenology in adaptation planning: An empirical study of flood-affected people in Kampung Muara Baru Jakarta. Springer, Singapore, pp. 39–64.

  • Song, J., M. Han, T.I. Kim, and J.E. Song. 2009. Rainwater harvesting as a sustainable water supply option in Banda Aceh. Desalination 248: 233–240.

    Article  CAS  Google Scholar 

  • Sood, A., V. Smakhtin, N. Eriyagama, K. G. Villholth and C. Dickens, 2017. Global environmental flow information for the sustainable development goals. International Water Management Institute

  • Sun, Z. 2013. Situation and countermeasures of water resources in Beijing. Beijing Water. https://doi.org/10.3969/j.issn.1673-4637.2013.04.003.

    Article  Google Scholar 

  • Takagi, H., M. Esteban, T. Mikami, and D. Fujii. 2016. Projection of coastal floods in 2050 Jakarta. Urban Climate 17: 135–145. https://doi.org/10.1016/j.uclim.2016.05.003.

    Article  Google Scholar 

  • Tbca, B., D. Ypdc, T.A. Yao, B. Lpd, and E. Bdb. 2020. Observations of heavy rainfall and extreme flood events over Banke-Bardiya districts of Nepal in 2016–2017. Progress in Disaster Science. https://doi.org/10.1016/j.pdisas.2020.100074.

    Article  Google Scholar 

  • Tirtomihardjo, H. 2011. Groundwater Resource Potential in Indonesia and their Management. Asia Pacific Water Forum (APWF) Regional Water, Asia Pacific Water Forum (APWF) Regional Water.

  • Tran, T., and K.G. Nguyen. 2018. Metal and metalloid concentrations in soil, surface water, and vegetables and the potential ecological and human health risks in the northeastern area of Hanoi, Vietnam. Environmental Monitoring and Assessment 190: 624. https://doi.org/10.1007/s10661-018-6994-7.

    Article  CAS  Google Scholar 

  • United Nations. 2018. SDG 6 synthesis report 2018 on water and sanitation. United Nations. https://doi.org/10.18356/e8fc060b-en

  • Uprety, A., A. Ozaki, Y. Senoo, I. Yoshida, C. Leppold, A. Higuchi, and T. Tanimoto. 2017. Flood damage in Nepal exacerbated by underlying conflict with India. The Lancet Planetary Health 1: e351–e352. https://doi.org/10.1016/S2542-5196(17)30159-62542-5196.

    Article  Google Scholar 

  • Voorst, V., and Roanne. 2016. Formal and informal flood governance in Jakarta, Indonesia. Habitat International. https://doi.org/10.1016/j.habitatint.2015.08.023.

    Article  Google Scholar 

  • Vu, V.H., and B.J. Merkel. 2018. Estimating groundwater recharge for Hanoi, Vietnam. Science of the Total Environment 651: 1.

    Google Scholar 

  • Wang, J., Y. Shang, H. Wang, Y. Zhao, and Y. Yin. 2015a. Beijing’s water resources: Challenges and solutions. Jawra Journal of the American Water Resources Association 51: 614–623. https://doi.org/10.1111/1752-1688.12315.

    Article  Google Scholar 

  • Wang, J., Y. Shang, H. Wang, Y. Zhao, and Y. Yin. 2015b. Beijing’s water resources: Challenges and solutions. JAWRA Journal of the American Water Resources Association 51: 614–623. https://doi.org/10.1111/1752-1688.12315.

    Article  Google Scholar 

  • Wei, S. 2012. Reflections on the “721” heavy rain in Beijing. Civil Aviation of China 000: 46–48.

    Google Scholar 

  • Wei, W. 2016. Several relationships need to be dealt with in the construction of water saving agriculture in Beijing. Economic Research Guide 14: 39–41.

    Google Scholar 

  • Yang, S.J. 2020. The middle route of the South-to-North Water Diversion Project has delivered 30 billion cubic meters of water to the north, benefiting 60 million people. http://news.cctv.com/2020/06/03/ARTIeM75r6xhvG5YZKLLgTbT200603.shtml. accessed June 3 2020.

  • Yeung, Y. 2001. Coastal mega-cities in Asia: Transformation, sustainability and management. Ocean & Coastal Management 44: 319–333. https://doi.org/10.1016/S0964-5691(01)00053-9.

    Article  Google Scholar 

  • Yoshino, G.H., L.L. Fernandes, J.H. Ishihara, and A. Silva. 2014. Use of rainwater for non-potable purposes in the Amazon. Environment Development & Sustainability 16 (2): 431–442.

    Article  Google Scholar 

  • Yu, W., E. Nakakita, and K. Jung. 2016. Flood forecast and early warning with high-resolution ensemble rainfall from numerical weather prediction model. Procedia Engineering 154: 498–503.

    Article  Google Scholar 

  • Yumul, G.P., Jr., N.A. Cruz, N.T. Servando, and C.B. Dimalanta. 2011. Extreme weather events and related disasters in the Philippines, 2004–08: A sign of what climate change will mean? Disasters 35: 362–382. https://doi.org/10.1111/j.1467-7717.2010.01216.x0361-3666.

    Article  Google Scholar 

  • Yuping, X. 2016. Current situation and challenges of urban traffic flood control management in Beijing. Beijing Water 000: 39–44. https://doi.org/10.3969/j.issn.1673-4637.2016.04.010.

    Article  Google Scholar 

  • Zha, X., P. Luo, W. Zhu, S. Wang, J. Lyu, M. Zhou, A. Huo, and Z. Wang. 2021. A bibliometric analysis of the research on sponge city: Current situation and future development direction. Ecohydrology. https://doi.org/10.1002/eco.2328.

    Article  Google Scholar 

  • Zhang, L., C. Cong, H. Pan, Z. Cai, V. Cvetkovic, and B. Deal. 2021. Socioecological informed comparative modeling to promote sustainable urban policy transitions: Case study in Chicago and Stockholm. Journal of Cleaner Production 281: 125050.

    Article  Google Scholar 

  • Zhang, L., C. Cong, H. Pan, Z. Cai, and B. Deal. 2020a. Socioecological informed comparative modeling to promote sustainable urban policy transitions: Case study in Chicago and Stockholm. Journal of Cleaner Production. https://doi.org/10.1016/j.jclepro.2020.125050.

    Article  Google Scholar 

  • Zhang, S., Y. Li, M. Ma, T. Song, and R. Song. 2018. Storm water management and flood control in sponge city construction of Beijing. Water 10 (8): 1.

    Article  Google Scholar 

  • Zhang, X., M. Hu, C. Gang, and Y. Xu. 2012. Urban rainwater utilization and its role in mitigating urban waterlogging problems-A case study in Nanjing, China. Water Resources Management 26: 3757–3766.

    Article  Google Scholar 

  • Zhang, Y.M. 2017. Current situation and sustainable development countermeasures of water resources utilization in Shunyi District, Beijing. Beijing Water 000: 5–9. https://doi.org/10.19671/j.1673-4637.2017.05.002.

    Article  Google Scholar 

  • Zhang, Y., P. Luo, S. Zhao, S. Kang, and J. Lyu. 2020b. Control and remediation methods for eutrophic lakes in recent 30 years. Water Science & Technology. https://doi.org/10.2166/wst.2020.218.

    Article  Google Scholar 

  • Zhongshan Yang, Y.D., and Z. Wang. 2010. Cause analysis and Countermeasures of serious decline of groundwater level in Beijing. China Water Conservancy 19: 60–62. https://doi.org/10.3969/j.issn.1000-1123.2010.19.019.

    Article  Google Scholar 

  • Zhu, Y.L., F. Su, S. Zhang, and B. Sun. 2020. Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sensing 12: 4177. https://doi.org/10.3390/rs12244177.

    Article  Google Scholar 

  • Zoleta-Nantes, D.B. 2000. Flood hazards in metro Manila: Recognizing commonalities, differences, and courses of action. Social Science Diliman. https://doi.org/10.5194/nhess-13-653-2013.

  • Zoysa, S.D. 2020. Beyond the wall: Dyking as an object of everyday governance in the Bay of Manila, Philippines. Marine Policy 112: 10366.

    Google Scholar 

  • Zoysa, S.D., T. Schne, J. Herbeck, J. Illigner, and A.K. Hornidge. 2021. The “wickedness” of governing land subsidence: Policy perspectives from urban Southeast Asia. PLoS ONE 16 (6): e0250208. https://doi.org/10.1371/journal.pone.0250208.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In this study, the finance supports are given by National Key R&D Program of China (Grant No. 2018YFE0103800); the Fundamental Research Funds for the Central Universities, CHD (Grant No. 300102299302), One Hundred Talent Plan of Shaanxi Province, International Collaborative Research of Disaster Prevention Research Institute of Kyoto University (Grant No. 2019W-02) and Excellent projects for science and technology activities of overseas staff in Shaanxi Province (Grant No. 2018038). We give our deep thanks to the reviewers and editors for their valuable comments to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuangtao Wang or Aidi Huo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, P., Mu, Y., Wang, S. et al. Exploring sustainable solutions for the water environment in Chinese and Southeast Asian cities. Ambio 51, 1199–1218 (2022). https://doi.org/10.1007/s13280-021-01654-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-021-01654-3

Keywords

Navigation