Skip to main content

Advertisement

Log in

The need to understand the stability of arctic vegetation during rapid climate change: An assessment of imbalance in the literature

  • Review
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

In early studies, northern vegetation response to global warming recognised both increases in biomass/cover and shrinking of species’ distributional ranges. Subsequent field measurements focussed on vegetation cover and biomass increases (“greening”), and more recently decreases (“browning”). However, satellite observations show that more than 50% of arctic vegetation has not changed significantly despite rapid warming. While absence of change in remote sensing data does not necessarily mean no ecological change on the ground, the significant proportion of the Arctic that appears to be stable in the face of considerable climate change points to a greater need to understand Arctic ecosystem stability. In this paper, we performed an extensive review of the available literature to seek balances or imbalances between research focussing on “greening”, “browning” and “stability/no change”. We find that greening studies dominate the literature though two relatively small areas of the Arctic are disproportionately represented for this main change process. Critically, there are too few studies anywhere investigating stability. We highlight the need to understand the mechanisms driving Arctic ecosystem stability, and the potential longer-term consequences of remaining stable in a rapidly changing climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anisimov, O., and S. Zimov. 2020. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis and predictive modelling. Ambio. https://doi.org/10.1007/s13280-020-01392-y.

    Article  Google Scholar 

  • Berner, L.T., R. Massey, P. Jantz, B.C. Forbes, M. Macias-Fauria, I. Myers-Smith, T. Kumpula, G. Gauthier, et al. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications 11: 4621. https://doi.org/10.1038/s41467-020-18479-5.

    Article  CAS  Google Scholar 

  • Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comiso, H.E. Epstein, G. Jia, R. Gens, J.E. Pinzon, et al. 2010. Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions 14: 1–20.

    Google Scholar 

  • Bliss, L.C., O.W. Heal, and J.J. Moore, eds. 1981. Tundra ecosystems: A comparative analysis, 813. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bjerke, J.W., S.R. Karlsen, K.A. Høgda, E. Malnes, J.U. Jepsen, S. Lovibond, D. Vikhamar-Schuler, and H. Tømmervik. 2014. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks. Environmental Research Letters 9: 084006.

    Google Scholar 

  • Bjorkman, A.D., I.H. Myers-Smith, S.C. Elmendorf, S. Normand, N. Rüger, P.S.A. Beck, A. Blach-Overgaard, D. Blok, et al. 2018. Plant functional trait change across a warming tundra biome. Nature 562: 57–62. https://doi.org/10.1038/s41586-018-0563-7.

    Article  CAS  Google Scholar 

  • Bokhorst, S., J.W. Bjerke, H. Tömmervik, T.V. Callaghan, and G.K. Phoenix. 2009. Winter warming events damage sub-Arctic vegetation: Consistent evidence from an experimental manipulation and a natural event. Journal of Ecology 97: 1408–1415.

    Google Scholar 

  • Bret-Harte, M.S., G.R. Shaver, J.P. Zoerner, J.F. Johnstone, J.L. Wagner, A.S. Chavez, R.F. Gunkelman, S.C. Lippert, et al. 2001. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82: 18–32.

    Google Scholar 

  • Brooker, R.W., J.M.J. Travis, E.J. Clark, and C. Dytham. 2007. Modelling species’ range shifts in a changing climate: The impacts of biotic interactions, dispersal distance and the rate of climate change. Journal of Theoretical Biology 245: 59–65.

    Google Scholar 

  • Callaghan, T.V. 1974. Intraspecific variation in Phleum alpinum L. with special reference to polar populations. Arctic Alpine Research 6: 361–401.

    Google Scholar 

  • Callaghan, T.V., O. Shaduyko, and S. Kirpotin. 2021. Siberian Environmental Change. Ambio Special Issue, in press.

  • Callaghan, T.V., M. Sonesson, and L. Somme. 1992. Responses of terrestrial plants and invertebrates to environmental change at high latitudes. Philosophical Transactions of the Royal Society London b. 338: 279–288.

    Google Scholar 

  • Callaghan, T.V., and C.E. Tweedie. 2011. Multi-decadal changes in tundra environments and ecosystems: The international polar year back to the future project. Ambio 40: 555–716.

    Google Scholar 

  • Callaghan, T.V., T.R. Christensen, and E.J. Jantze. 2011. Plant and vegetation dynamics on Disko Island, West Greenland: snapshots separated by over 40 years. In: Callaghan, T.V. and C.E. Tweedie (eds) Multi-decadal changes in tundra environments and ecosystems: The international polar year back to the future project. Ambio 40: 624–637.

  • Callaghan, T.V., C. Jonasson, T. Thierfelder, Z. Yang, H. Hedenas, M. Johansson, U. Molau, R. Van Bogaert, et al. 2013. Ecosystem change and stability over multiple decades in the Swedish subarctic: Complex processes and multiple drivers. Philosophical Transactions of the Royal Society B 368: 20120488. https://doi.org/10.1098/rstb.2012.0488.

    Article  Google Scholar 

  • Cazzolla Gatti, R. 2016. The fractal nature of the latitudinal biodiversity gradient. Biologia 71: 669–672.

    Google Scholar 

  • Cazzolla Gatti, R., A. Di Paola, A. Bombelli, S. Noce, and R. Valentini. 2017. Exploring the relationship between canopy height and terrestrial plant diversity. Plant Ecology 218: 899–908.

    Google Scholar 

  • Cazzolla Gatti, R., A. Dudko, A. Lim, A.I. Velichevskaya, I.V. Lushchaeva, A.V. Pivovarova, S. Ventura, E. Lumini, et al. 2018. The last 50 years of climate-induced melting of the Maliy Aktru glacier (Altai Mountains, Russia) revealed in a primary ecological succession. Ecology and Evolution 8: 7401–7420.

    Google Scholar 

  • Cazzolla Gatti, R., T. Callaghan, A. Velichevskaya, A. Dudko, L. Fabbio, G. Battipaglia, and J. Liang. 2019. Accelerating upward treeline shift in the Altai Mountains under last-century climate change. Scientific Reports 9: 7678.

    Google Scholar 

  • Chapin, F.S., R.L. Jefferies, J.F. Reynolds, G.R. Shaver, and J. Svoboda, eds. 1992. Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, 469. San Diego: Academic Press Inc.

    Google Scholar 

  • Chapin, F.S., III., Y. Bergeron, T.V. Callaghan, M. Fukuda, J.F. Johnstone, and G.S.A. ZimovJuday. 2004. Global change and the Boreal Forest: Resilience leads to thresholds and shifting states rather than gradual change. Ambio 33: 361–365.

    Google Scholar 

  • Chernov, Y.I. 1985. The living tundra, 213. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cooper, E.J. 2014. Warmer shorter winters disrupt arctic terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics 45: 271–295.

    Google Scholar 

  • Davis, M.B. 1988. Ecological systems and dynamics. In: Toward an understanding of global change, 69–106. Washington DC: National Academy Press.

  • Eira, I.M.G., C. Jaedicke, O.H. Magga, N.G. Maynard, D. Vikhamar-Schuler, and S.D. Mathiesen. 2013. Traditional Sami snow terminology and physical snow classification—two ways of knowing. Cold Regions Science and Technology 85: 117–130. https://doi.org/10.1016/j.coldregions.2012.09.004.

    Article  Google Scholar 

  • Elmendorf, S.C., G.H. Henry, R.D. Hollister, R.G. Björk, N. Boulanger-Lapointe, E.J. Cooper, J.H.C. Cornelissen, T.A. Day, et al. 2012a. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2: 453–457.

    Google Scholar 

  • Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, R.G. Björk, A.D. Bjorkman, T.V. Callaghan, L.S. Collier, E.J. Cooper, et al. 2012b. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters 15: 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x.

    Article  Google Scholar 

  • Epstein, H.E., U.S. Bhatt, M.K. Raynolds, D.A. Walker, P.A. Bieniek, C.J. Tucker, J. Pinzon, I.H. Myers-Smith, et al. 2015. Tundra greenness. In Arctic report card: Update for 2015, eds. M.O. Jeffries, J. Richter-Menge, J.E. Overland. NOAA, Silver Spring, MD. http://www.arctic.noaa.gov/reportcard/. Accessed 18 December 2015.

  • Fetcher, N., and G.R. Shaver. 1983. Life histories of tillers of Eriophorum vaginatum in relation to tundra disturbance. The Journal of Ecology, 131–147.

  • Fridley, J.D., J.P. Grime, A.P. Askew, B. Moser, and C.J. Stevens. 2011. Soil heterogeneity buffers community response to climate change in species-rich grassland. Global Change Biology 17: 2002–2011. https://doi.org/10.1111/j.1365-2486.2010.02347.x.

    Article  Google Scholar 

  • Frost, G.V., U.S. Bhatt, H.E. Epstein, D.A. Walker, M.K. Raynolds, L.T. Berner, J.W. Bjerke, A.L. Breen, et al. 2019. Tundra greenness. In Arctic report card 2019, eds. J. Richter-Menge, M.L. Druckenmiller, and M. Jeffries. http://www.arctic.noaa.gov/Report-Card

  • Graae, B.J., V. Vandvik, W.S. Armbruster, W.L. Eiserhardt, J.C. Svenning, K. Hylander, J. Ehrlén, J.D.M. Speed, et al. 2018. Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics 30: 41–50.

    Google Scholar 

  • Grime, J.P., V.K. Brown, K. Thompson, G.J. Masters, S.H. Hillier, I.P. Clarke, A.P. Askew, D. Corker, et al. 2000. The response of two contrasting limestone grasslands to simulated climate change. Science 289: 762–765.

    CAS  Google Scholar 

  • Grime, J.P., J.D. Fridley, A.P. Askew, K. Thompson, J.G. Hodgson, and C.R. Bennett. 2008. Long-term resistance to simulated climate change in an infertile grassland. Proceedings of the National Academy of Sciences of USA 105: 10028–10032.

    CAS  Google Scholar 

  • Henry, G.H.R., and U. Molau. 1997. Tundra plants and climate change: The international tundra experiment (ITEX). Global Change Biology 3: 1–9.

    Google Scholar 

  • Jia, G.S.J., H.E. Epstein, and D.A. Walker. 2003. Greening of arctic Alaska, 1981–2001. Geophysical Research Letters 30: 2067.

    Google Scholar 

  • Jónsdóttir, I.S., M. Augner, T. Fagerström, H. Persson, and A. Stenström. 2000. Genet age in marginal populations of two clonal Carex species in the Siberian Arctic. Ecography 23: 402–412.

    Google Scholar 

  • Kausrud, K.L., A. Mysterud, H. Steen, J.O. Vik, E. Østbye, B. Cazelles, E. Framstad, A.M. Eikeset, et al. 2008. Linking climate change to lemming cycles. Nature 456: 93–97.

    CAS  Google Scholar 

  • Lavrillier, A., and S. Gabychev. 2021. An indigenous science of the climate change impacts on landscape topography in Siberia. Siberian Environmental Change. https://doi.org/10.1007/s13280-020-01467-w.

    Article  Google Scholar 

  • Laliberté, E., J.A. Wells, F. DeClerck, D.J. Metcalfe, C.P. Catterall, C. Queiroz, I. Aubin, S.P. Bonser, et al. 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13: 76–86.

    Google Scholar 

  • Milbau, A., A. Shevtsova, N. Osler, M. Mooshammer, and B.J. Graae. 2013. Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. New Phytologist 197: 1002–1011.

    Google Scholar 

  • Matveyeva, N.V., and L.L. Zanokha. 2013. Plant cover stability under significant landscape transformation in Western Taymyr tundras. Trudy Vserossiiskoi nauchnoi konferentsii “Biodiversity of ecosystems of the Far North: Inventarization, monitoring, protection” (Syktyvkar, Komi Republik), 3–7 July, 2013. Syktyvkar, 96–106.

  • Melillo, J., T.V. Callaghan, F.I. Woodward, E. Salati, and S.K. Sinha. 1990. The effects on ecosystems. In Climate change, the IPCC Scientific assessment, ed. J. Houghton, G.J. Jenkins, and J.J. Ephraums, 282–310. Cambridge: Cambridge University Press.

    Google Scholar 

  • Meerbeek, K.V., T. Jucker, and J.-C. Svenning. 2021. Unifying the concepts of stability and resilience in ecology. Journal of Ecology. https://doi.org/10.1111/1365-2745.13651.

    Article  Google Scholar 

  • Metcalf, D.B., T.D.G. Hermans, J. Ahlstand, M. Becker, M. Berggren, R.G. Björk, M.P. Björkman, and D. Blok. 2018. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology and Evolution 2: 1443–1448.

    Google Scholar 

  • Myers-Smith, I.H., D.S. Hik, C. Kennedy, D. Cooley, J.F. Johnstone, A.J. Kenney, and C.J. Krebs. 2011. Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. Ambio 40: 610–623. https://doi.org/10.1007/s13280-011-0168-y.

    Article  Google Scholar 

  • Myers-Smith, I.H., S.C. Elmendorf, P.S. Beck, M. Wilmking, M. Hallinger, D. Blok, K.D. Tape, S.A. Rayback, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5: 887–891.

    Google Scholar 

  • Myers-Smith, I.H., J.T. Kerby, G.K. Phoenix, J.W. Bjerke, H.E. Epstein, J.J. Assmann, C. John, and L. Andreu-Hayles. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change 10: 106–117. https://doi.org/10.1038/s41558-019-0688-1.

    Article  Google Scholar 

  • Oinonen, E. 1968. The size of Lycopodium clavatum and L. annotinum stands as compared to that of L. complanatum and Pteridium aquilinum. Acta Foretsalia Fennica 87: 5–53.

    Google Scholar 

  • Olofsson, J., L. Oksanen, T. Callaghan, P.E. Hulme, T. Oksanen, and O. Suominen. 2009. Herbivores inhibit climate-driven shrub expansion on the tundra. Global Change Biology 15: 2681–2693.

    Google Scholar 

  • Park, T., S. Ganguly, H. Tømmervik, E.S. Euskirchen, K.-A. Høgda, S.R. Karlsen, V. Brovkin, R.R. Nemani, et al. 2016. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters 11: 084001.

    Google Scholar 

  • Phoenix, G.K., and J.W. Bjerke. 2016. Arctic browning: Extreme events and trends reversing arctic greening. Global Change Biology 22: 2960–2962. https://doi.org/10.1111/gcb.13261.

    Article  Google Scholar 

  • Prach, K., J. Kosnar, J. Klimesova, and M. Hais. 2010. High Arctic vegetation after 70 years: A repeated analysis from Svalbard. Polar Biology 33: 635–639.

    Google Scholar 

  • Riseth, J.Å., H. Tømmervik, E. Helander-Renvall, V. Pohjola, N.T. Labba, N. Labba, E.A. Niia, H. Kuhmunen, et al. 2010. “Snow and Ice” Sami TEK and Science in concert for understanding climate change effects on reindeer pasturing. Polar Recording 47: 202–217.

    Google Scholar 

  • Ross, S.E., T.V. Callaghan, A.R. Ennos, and E. Sheffield. 1998. Biomechanics and growth form of the moss Hylocomium splendens. Annals of Botany 82: 787–793.

    Google Scholar 

  • Sandberg, G. 1963. Växtvärlden I Abisko nationalpark. In Natur I Lappland, II, ed. K. Curry-Lindahl, 885–909. Uppsala, Bokförlaget Svensk Natur. (in Swedish).

  • Suding, K.N., E.C. Farrer, A.J. King, L. Kueppers, and M.J. Spasojevic. 2015. Vegetation change at high elevation: Scale dependence and interactive effects on Niwot Ridge. Plant Ecology & Diversity 8: 713–725.

    Google Scholar 

  • Sokolov, A.A., N.A. Sokolova, R.A. Ims, L. Brucker, and D. Ehrich. 2016. Emergent rainy winter warm spells may promote boreal predator expansion into the Arctic. Arctic 69: 121–129.

    Google Scholar 

  • Sturm, M., C. Racine, and K. Tape. 2001. Increasing shrub abundance in the Arctic. Nature 411: 546–547.

    CAS  Google Scholar 

  • Tilman, D., R.M. May, C.L. Lehman, and M.A. Nowak. 1994. Habitat destruction and the extinction debt. Nature 371: 65–66.

    Google Scholar 

  • Van Bogaert, R., C. Jonasson, M. De Dapper, and T.V. Callaghan. 2009. Competitive interaction between aspen and birch moderated by invertebrate and vertebrate herbivores and climate warming. Plant Ecology and Diversity 2: 221–232.

    Google Scholar 

  • Van Bogaert, R., K. Haneca, J. Hoogesteger, C. Jonasson, M. De Dapper, and T.V. Callaghan. 2011. A century of tree line changes in sub-Arctic Sweden show local and regional variability and only a minor role of 20th Century climate warming. Journal of Biogeography 38: 907–921.

    Google Scholar 

  • Van Wijk, M.T., K.E. Clemmensen, G.R. Shaver, M. Williams, T.V. Callaghan, F.S. Chapin, J.H.C. Cornelissen, L. Gough, et al. 2004. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: Generalizations and differences in ecosystem and plant type responses to global change. Global Change Biology 10: 105–123.

    Google Scholar 

  • Walker, D.A., M.K. Raynolds, F.J.A. Daniëls, E. Einarsson, A. Elvebakk, W.A. Gould, W.A. Katenin, S.S. Kholod, et al. 2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science 16: 267–282.

    Google Scholar 

  • Walker, M.D., C.H. Wahren, R.D. Hollister, G.H.R. Henry, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harte, M.P. Calef, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 1342. https://doi.org/10.1073/pnas.0503198103.

    Article  CAS  Google Scholar 

  • Xu, L., R.B. Myneni, F.S. Chapin III., T.V. Callaghan, J.E. Pinzon, C.J. Tucker, Z. Zhu, J. Bi, et al. 2013. Temperature and vegetation seasonality diminishment over Northern Lands. Nature Climate Change. https://doi.org/10.1038/NCLIMATE1836.

    Article  Google Scholar 

  • Yu, Q., H. Epstein, R. Engstrom, and D. Walker. 2017. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory. Global Change Biology 23: 3895–3907. https://doi.org/10.1111/gcb.13632.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for assistance to C. Davies, and A. Burch (Sheffield University), L. Callaghan, and several students from Tomsk State University. T.V.C. is grateful for the support from the Tomsk State University Competitiveness Improvement Programme. He also expresses his gratitude to the research infrastructure "System of experimental stations located along the latitudinal gradient" for fruitful cooperation (http://ckprf.ru/usu/586718/; http://www.secnet.online/megaustanovka-ru.html) and the EU-funded INTERACT project (http://www.eu-interact.org) for funding. The reported study was carried out using the research equipment of the Unique Research Installation ‘System of experimental bases located along the latitudinal gradient’ TSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cazzolla Gatti.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 834 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callaghan, T.V., Cazzolla Gatti, R. & Phoenix, G. The need to understand the stability of arctic vegetation during rapid climate change: An assessment of imbalance in the literature. Ambio 51, 1034–1044 (2022). https://doi.org/10.1007/s13280-021-01607-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-021-01607-w

Keywords

Navigation