Skip to main content

Advertisement

Log in

Key periods of peatland development and environmental changes in the middle taiga zone of Western Siberia during the Holocene

  • Siberian Environmental Change
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

The response of peatlands to climate change can be highly variable. Through understanding past changes we can better predict the response of peatlands to future climate change. We use a multi-proxy approach to reconstruct the surface wetness and carbon accumulation of the Mukhrino mire (Western Siberia), describing the development of the mire since peat formation in the early Holocene, around 9360 cal. year BP. The mire started as a rich fen which initiated after paludification of a spruce forest (probably in response to a wetter climate), while the Mukhrino mire progressed to ombrotrophic bog conditions (8760 cal. year BP). This transition coincided with the intensive development of mires in Western Siberia and was associated with active carbon accumulation (31 g m−2 year−1). The ecosystem underwent a change to a tree-covered state around 5860 cal. year BP, likely in response to warming and possible droughts and this accompanied low carbon accumulation (12 g m2 year−1). If the future climate will be warmer and wetter, then regional mires are likely to remain a carbon sink, alternatively, a reversion to the wooded state with reduced carbon sink strength is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alley, R.B. 2003. Palaeoclimatic insights into future climate challenges. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361: 1831–1849. https://doi.org/10.1098/rsta.2003.1236.

    Article  Google Scholar 

  • Amon, L., A. Blaus, T. Alliksaar, A. Heinsalu, E. Lapshina, M. Liiv, T. Reitalu, J. Vassiljev, et al. 2020. Postglacial flooding and vegetation history on the Ob River terrace, central Western Siberia based on the palaeoecological record from Lake Svetlenkoye. Holocene 30: 618–631. https://doi.org/10.1177/0959683619895582.

    Article  Google Scholar 

  • Anderson, D.E. 2002. Carbon accumulation and C/N ratios of peat bogs in North-West Scotland. Scottish Geographical Journal 118: 323–341.

    Google Scholar 

  • Anisimov, O., and S. Zimov. 2020. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio. https://doi.org/10.1007/s13280-020-01392-y.

    Article  Google Scholar 

  • Belyea, L.R., and A.J. Baird. 2006. Beyond “the limits to peat bog growth”: Cross-scale feedback in peatland development. Ecological Monographs 76: 299–322.

    Article  Google Scholar 

  • Bennett, K.D. 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.

    Article  CAS  Google Scholar 

  • Blaauw, M. 2020. clam: Classical age-depth modelling of cores from deposits. R package version 2.3.5. https://CRAN.R-project.org/package=clam.

  • Blaauw, M., J.A. Christen, and M.A. Aquino. 2020. rbacon: Age-depth modelling using Bayesian statistics. R package version 2.4.2. https://CRAN.R-project.org/package=rbacon.

  • Blyakharchuk, T.A. 2009. Western Siberia, a review of Holocene climatic changes. Journal of Siberian Federal University 2: 4–12.

    Article  Google Scholar 

  • Box, J.E., W.T. Colgan, T.R. Christensen, N.M. Schmidt, M. Lund, F.-J.W. Parmentier, R. Brown, U.S. Bhatt, et al. 2019. Key indicators of Arctic climate change: 1971–2017. Environmental Research Letters 14: 045010.

    Article  CAS  Google Scholar 

  • Callaghan, T.V., O. Kulikova, L. Rakhmanova, E. Topp-Jorgenawn, N. Labba, L.-A. Kuhmanen, S. Kirpotin, O. Shaduyko, et al. 2020. Improving dialogue among researchers, local and indigenous peoples and decision-makers to address issues of climate change in the North. Ambio 49: 1161–1178. https://doi.org/10.1007/s13280-019-01277-9.

    Article  Google Scholar 

  • Callaghan, T.V., O.M. Shaduyko, and S.N. Kirpotin. 2021. Siberian Environmental Change. Special Issue. Ambio, Vol. 50.

  • Chambers, F.M., D.W. Beilman, and Z. Yu. 2010/2011. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland. Mires and Peat 7: 1–10.

  • Clymo, R.S., J. Turunen, and K. Tolonen. 1998. Carbon accumulation in peatland. Oikos 81: 368–388.

    Article  Google Scholar 

  • Connor, S.E., D. Colombaroli, F. Confortini, E. Gobet, B. Ilyashuk, E. Ilyashuk, J. van Leeuwen, M. Lamentowicz, et al. 2018. Long-term population dynamics—Theory and reality in a peatland ecosystem. Journal of Ecology 106: 333–346.

    Article  Google Scholar 

  • Crepin, A.-S., M. Karcher, and J.-C. Gascard. 2017. Arctic climate change, economy and society (ACCESS): Integrated perspectives. Ambio 46: 341–354. https://doi.org/10.1007/s13280-017-0953-3.

    Article  Google Scholar 

  • Duchko, M.A., E.V. Gulaya, O.V. Serebrenikova, E.B. Strel’nikova, and Y.I. Preis. 2013. Distribution of n-alkanes, steroids and triterpenoids in peat and vegetation of the mire Temnoe. Izevesitya Tomskogo Politechnicheskogo Universiteta. Inzhiniring georesursov 323: 40–44 (in Russian).

    Google Scholar 

  • Eppinga, M.B., M. Rietkerk, W. Borren, E.D. Lapshina, W. Bleuten, and M.J. Wassen. 2008. Regular surface patterning of peatlands: Confronting theory with field data. Ecosystems 11: 520–536. https://doi.org/10.1007/s10021-008-9138-z.

    Article  CAS  Google Scholar 

  • Ficken, K.J., B. Li, D.L. Swain, and G. Eglinton. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31: 745–749.

    Article  CAS  Google Scholar 

  • Filippov, I.V., and E.D. Lapshina. 2008. Peatland unit types of lake-bog systems in the Middle Priob’ie (Western Siberia). Environmental Dynamics and Global Climate Change 1: 115–124.

    Article  Google Scholar 

  • Frey, K.E., and L.C. Smith. 2003. Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation. Polar Research 22: 287–300.

    Article  Google Scholar 

  • Gałka, M., K. Tobolski, E. Zawisza, and T. Goslar. 2014. Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data. Vegetation History and Archaeobotany 23: 123–152.

    Article  Google Scholar 

  • Glaser, P.H. 1998. The distribution and origin of mire pools. In Patterned mires and mire pools, ed. V. Standen, J.H. Tallis, and R. Meade, 4–25. London: British Ecological Society.

    Google Scholar 

  • Grimm, E.C. 1987. CONISS: A FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13: 13–35.

    Article  Google Scholar 

  • Groisman, P.Y., T.A. Blyakharchuk, A.V. Chernokulsky, M.M. Arzhanov, L.B. Marchesini, E.G. Bogdanova, I.I. Borzenkova, O.N. Bulygina, et al. 2013. Climate changes in Siberia. In Regional environmental changes in Siberia and their global consequences, ed. P.Y. Groisman and G. Gutman, 57–109. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Harris, L.I., N.T. Roulet, and T.R. Moore. 2020. Mechanisms for the development of microform patterns in peatlands of the Hudson Bay lowland. Ecosystems 23: 741–767.

    Article  Google Scholar 

  • Hua, Q., M. Barbetti, and Z. Rakowski. 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55: 2059–2072.

    Article  CAS  Google Scholar 

  • IPCC. 2013. Climate change 2013: The physical science basis. In Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change, ed. T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, et al. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ivanov, K.E., and S. Novikov. 1976. Mires of Western Siberia, their structure and hydrological regime. Moscow: Nauka.

    Google Scholar 

  • Jackson, S.T., and J.L. Blois. 2015. Community ecology in a changing environment: Perspectives from the Quaternary. Proceedings of the National academy of Sciences of the United States of America 112: 4915–4921.

    Article  CAS  Google Scholar 

  • Juggins, S. 2017. rioja: Analysis of Quaternary Science Data. R package version (0.9-21). http://cran.r-project.org/package=rioja.

  • Korolyuk, A.Y. 2006. Ecological optima of vascular plants of South Siberia. In Botanical studies of Siberia and Kazakhstan, ed. A.N. Kupriyanov, 3–28. Barnaul: Irbis.

    Google Scholar 

  • Lamentowicz, M., M. Słowiński, K. Marcisz, M. Zielińska, K. Kaliszan, E. Lapshina, D. Gilbert, A. Buttler, et al. 2015. Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quaternary Research 84: 312–325.

    Article  CAS  Google Scholar 

  • Langdon, P., P. Hughes, and T. Brown. 2012. Peat stratigraphy and climate change. Quaternary International 268: 1–8. https://doi.org/10.1016/j.quaint.2012.05.043.

    Article  Google Scholar 

  • Leshchinsky, S.V., E.N. Mashchenko, E.A. Ponomareva, L.A. Orlova, E.M. Burkanova, V.A. Konovalova, I.I. Teterina, and K.M. Gevlya. 2006. Comprehensive paleontological-stratigraphic studies of the Lugovskoye location (2002-2004). Archaeology, Ethnology & Anthropology of Eurasia 25: 54–69 (in Russian).

    Article  Google Scholar 

  • Limpens, J., M. Holmgren, C.M.J. Jacobs, S.E. Van der Zee, E. Karofeld, and F. Berendse. 2014. How does tree density affect water loss of peatlands? A mesocosm experiment. PLoS ONE 9: e91748. https://doi.org/10.1371/journal.pone.0091748.

    Article  CAS  Google Scholar 

  • Lopatin K.I., O.A. Kashtanova, and A.I. Montile. 2009. An optimization model for the placement of oilfield facilities in the forest-bog zone of Western Siberia. Bulletin of the Nizhnevartovsk State University 1: (in Russian).

  • Mazei, Y.A, and A.N. Tsyganov. 2006. Freshwater testate amoebae. Moscow: KMK (in Russian).

    Google Scholar 

  • Mazei, Y.A, and V.A. Chernyshov. 2011. Testate amoebae communities in the southern tundra and forest-tundra of Western Siberia. Biology Bulletin 38: 789–796.

    Article  Google Scholar 

  • Nijp, J.J., K. Metselaar, J. Limpens, H.M. Bartholomeus, M.B. Nilsson, F. Berendse, and S.E. van der Zee. 2019. High-resolution peat volume change in a northern peatland: Spatial variability, main drivers, and impact on ecohydrology. Ecohydrology 12: e2114.

    Article  Google Scholar 

  • Payne, R.J., E.A.D. Mitchell, H. Nguyen-Viet, and D. Gilbert. 2012. Can pollution bias peatland paleoclimate reconstruction? Quaternary Research 78: 170–173.

    Article  CAS  Google Scholar 

  • Pearson, R.G., S.J. Phillips, M.M. Loranty, P.S. Beck, T. Damoulas, S.J. Knight, and S.J. Goetz. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3: 673–677.

    Article  Google Scholar 

  • Piilo, S.R., A. Korhola, L. Heiskanen, J.P. Tuovinen, M. Aurela, S. Juutinen, H. Marttila, M. Saari, et al. 2020. Spatially varying peatland initiation, Holocene development, carbon accumulation patterns and radiative forcing within a subarctic fen. Quaternary Science Reviews 248: 106596.

    Article  Google Scholar 

  • Pitkänen, A., J. Turunen, T. Tahvanainen, and K. Tolonen. 2002. Holocene vegetation history from the Salym-Yugan mire area, West Siberia. The Holocene 12: 353–362.

    Article  Google Scholar 

  • R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Railsback, L.B., F. Liang, G.A. Brook, N.R.G. Voarintsoa, H.R. Sletten, E. Marais, B. Hardt, H. Cheng, et al. 2018. The timing, two-pulsed nature, and variable climatic expression of the 4.2 ka event: A review and new high-resolution stalagmite data from Namibia. Quaternary Science Reviews 186: 78–90. https://doi.org/10.1016/j.quascirev.2018.02.015.

    Article  Google Scholar 

  • Ramenskiy, L.G., I.A. Tastsenkin, O.N. Chizhikov, and N.A. Antipin. 1956. Ecological assessment of agricultural lands by vegetation cover. Moscow: Selkhozgiz (in Russian).

    Google Scholar 

  • Ratcliffe, J.L., A. Creevy, R. Andersen, E. Zarov, P.P.J. Gaffney, M.A. Taggart, Y.A. Mazei, A.N. Tsyganov, et al. 2017. Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland. Science of the Total Environment 607–608: 816–828. https://doi.org/10.1016/j.scitotenv.2017.06.276.

    Article  CAS  Google Scholar 

  • Reimer, P.J., W.E.N. Austin, E. Bard, A. Bayliss, P.G. Blackwell, C.B. Ramsey, M. Butzin, H. Cheng, et al. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62: 725–757.

    Article  CAS  Google Scholar 

  • Rydin, H. 1993. Mechanisms of interactions among Sphagnum species along water-level gradients. Advances in Bryology 5: 153–185.

    Google Scholar 

  • Rydin, H., and J. Jeglum. 2006. The biology of peatlands. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Seppälä, M., and L. Koutaniemi. 1985. Formation of a string and pool topography as expressed by morphology, stratigraphy and current processes on a mire in Kuusamo, Finland. Boreas 14: 287–309.

    Article  Google Scholar 

  • Sheng, Y., L.C. Smith, G.M. MacDonald, K.V. Kremenetski, K.E. Frey, A.A. Velichko, M. Lee, D.W. Beilmannr, et al. 2004. A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Global Biogeochemical Cycles 18: GB3004. https://doi.org/10.1029/2003GB002190.

    Article  CAS  Google Scholar 

  • Simpson, G.L., and J. Oksanen. 2020. analogue: Analogue and weighted averaging methods for palaeoecology. R package version 0.17-4.

  • Swindles, G.T., P.J. Morris, D.J. Mullan, R.J. Payne, T.P. Roland, M.J. Amesbury, M. Lamentowicz, E.T. Turner, et al. 2019. Widespread drying of European peatlands in recent centuries. Nature Geoscience 12: 922–928.

    Article  CAS  Google Scholar 

  • Tolonen, K., and J. Turunen. 1996. Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene 6: 171–178.

    Article  Google Scholar 

  • Tsyganov, A.N., I. Nijs, and L. Beyens. 2011. Does climate warming stimulate or inhibit soil protist communities? A test on testate amoebae in high-arctic tundra with free-air temperature increase. Protist 162: 237–248.

    Article  Google Scholar 

  • Tsyganov, A.N., K.V. Babeshko, and Y.A Mazei. 2016. A guide to testate amoebae with the keys to genera. Penza: PSU Press.

    Google Scholar 

  • Tsyganov, A.N., K.V. Babeshko, E.Y. Novenko, E.A. Malysheva, R.J. Payne, and Y.A. Mazei. 2017. Quantitative reconstruction of peatland hydrological regime with fossil testate amoebae communities. Russian Journal of Ecology 48: 191–198.

    Article  Google Scholar 

  • Turunen, J., T. Tahvanainen, K. Tolonen, and A. Pitkänen. 2001. Carbon accumulation in West Siberian mires, Russia. Global Biogeochemical Cycles 15: 285–296.

    Article  CAS  Google Scholar 

  • Varotsos, C.A., and Y.A Mazei. 2019. Future temperature extremes will be more harmful: A new critical factor for improved forecasts. International Journal of Environmental Research and Public Health 16: 4015–4022. https://doi.org/10.3390/ijerph16204015.

    Article  Google Scholar 

  • Varotsos, C.A., Y.A Mazei, and M.N. Efstathiou. 2020. Paleoecological and recent data show a steady temporal evolution of carbon dioxide and temperature. Atmospheric Pollution Research 11: 714–722. https://doi.org/10.1016/j.apr.2019.12.022.

    Article  CAS  Google Scholar 

  • Xu, M., S. Kang, X. Wang, H. Wu, D. Hu, and D. Yang. 2020. Climate and hydrological changes in the Ob River Basin during 1936–2017. Hydrological Processes 34: 1821–1836.

    Article  Google Scholar 

  • Yu, Z. 2011. Holocene carbon flux histories of the world’s peatlands: Global carbon-cycle implications. The Holocene 21: 761–774.

    Article  Google Scholar 

  • Zemtsov, A.A., A.V. Mezentsev, and L.I. Inisheva. 1998. Mires of the Western Siberia: Their role in the biosphere. Tomsk (in Russian).

  • Zverev, A.A. 2007. Information technologies in investigations of vegetation cover. Tomsk: TML-Press (in Russian).

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation (№ 19-14-00102), the grant of the Tyumen region Government in accordance with the Program of the World-Class West Siberian Interregional Scientific and Educational Center (National Project “Nauka”), Russian Foundation for Basic Research and Government of the Khanty-Mansiysk Autonomous region (№ 18-44-860017), grant of the Yugra State University (13-01-20/39) and INTERACT-II TA funding for the projects TREEPEAT and PEATSURE. This research was performed within the frameworks of the Development program of the Interdisciplinary Scientific and Educational School of M.V. Lomonosov Moscow State University “The future of the planet and global environmental change”.

Author information

Authors and Affiliations

Authors

Contributions

EDL, YAM, RJP, ANT and EAZ conceived the study; YAM, RJP and EDL secured funding; EDL, KVB, ANT, RJP, JLR and EAZ conducted fieldwork; KVB and SYY performed testate amoeba analysis; EDL conducted plant macrofossils analysis; EAZ conducted carbon, nitrogen, bulk density, ash content analysis, MGK conducted n-alkane analysis; YAF conducted peat humification analysis; EPZ conducted radiocarbon dating; ANT, EAZ, EDL, and YAM conducted data analysis and wrote the first draft of the manuscript to which all authors (with the exception of RJP—deceased) contributed.

Corresponding author

Correspondence to Andrey N. Tsyganov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 604 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganov, A.N., Zarov, E.A., Mazei, Y.A. et al. Key periods of peatland development and environmental changes in the middle taiga zone of Western Siberia during the Holocene. Ambio 50, 1896–1909 (2021). https://doi.org/10.1007/s13280-021-01545-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-021-01545-7

Keywords

Navigation