Skip to main content

Advertisement

Log in

Great Vasyugan Mire: How the world’s largest peatland helps addressing the world’s largest problems

  • Siberian Environmental Change
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Peatlands cover 3% of the land, occur in 169 countries, and have—by sequestering 600 Gt of carbon—cooled the global climate by 0.6 °C. After a general review about peatlands worldwide, this paper describes the importance of the Great Vasyugan Mire and presents suggestions about its protection and future research. The World’s largest peatland, the Great Vasyugan Mire in West-Siberia, forms the border between the Taiga and the Forest-Steppe biomes and harbours rare species and mire types and globally unique self-organizing patterns. Current oil and gas exploitation may arguably be largely phased out by 2050, which will pave the way for a stronger focus on the mire’s role in buffering climate change, maintaining ecosystem diversity, and providing other ecosystem services. Relevant new research lines will benefit from the extensive data sets that earlier studies have gathered for other purposes. Its globally unique character as the ‘largest life form on land’ qualifies the Great Vasyugan Mire in its entirety to be designated as a UNESCO World Heritage Site and a Ramsar Wetland of International Importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

modified from data in Berezin et al. 2014a)

Fig. 6

Similar content being viewed by others

References

  • Baryshnikov, M.K. 1929. Carex-Hypnum mires of West Vasuganye. Moscow: Institute of Grassland and Peatland Cultivation ((in Russian)).

    Google Scholar 

  • Biodiversity Conservation Research Center of the Russian Academy of Natural Sciences. 2020. Great Vasyugan Mire. http://www.ecoexpertcenter.ru/info/bolshoe_vasyuganskoe_boloto_227.html. Accessed 4 April 2020

  • Berezin, A.E., V.A. Bazanov, A.A. Skugarev, T.A. Rybina, and N.V. Parshina. 2014a. Great Vasyugan Mire: Landscape structure and peat deposit structure features. International Journal of Environmental Studies 71: 618–623. https://doi.org/10.1080/00207233.2014.942537.

    Article  Google Scholar 

  • Berezin, A.E., V.A. Bazanov, and N.V. Parshina. 2014b. The influence of the oil and gas complex on the bogs of the Western Siberia Taiga zone. International Journal of Environmental Studies 71: 716–721. https://doi.org/10.1080/00207233.2014.942109.

    Article  Google Scholar 

  • Bonn, A., T. Allott, M. Evans, H. Joosten, and R. Stoneman, eds. 2016. Peatland restoration and ecosystem services: Science, policy and practice. Cambridge: Cambridge University Press/British Ecological Society.

    Google Scholar 

  • Botch, M., and V. Masing. 1983. Mire ecosystems in the U.S.S.R. In Mires: swamp, bog, fen and moor, ed. A.J.P. Gore, 95–152. Amsterdam: Elsevier.

    Google Scholar 

  • Botch, M.S., K.I. Kobak, T.S. Vinson, and T.P. Kolchugina. 1995. Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochemical Cycles 9: 37–46.

    Article  CAS  Google Scholar 

  • Bronzov, A.. Ya.. 1930. Raised bogs of the NarymskiKrai (Vasyugan Basin). Proceedings of the Peat Institute 3: 1–99 (in Russian).

    Google Scholar 

  • Bronzov, A.. Ya.. 1936. Hypnum mires on the southern edge of the West Siberian lowland Taiga. Soil Science 2: 224–245 (in Russian).

    Google Scholar 

  • Bruisch, K. 2018. Nature mistaken: Resource-making, emotions and the transformation of peatlands in the Russian Empire and the Soviet Union. Environment and History. https://doi.org/10.3197/096734018X15254461646567.

    Article  Google Scholar 

  • Callaghan, T.V., O.M. Shaduyko, and S.N. Kirpotin. 2021. Siberian environmental change. Ambio 50(Special issue).

  • Cohen-Shacham, E., G. Walters, C. Janzen, and S. Maginnis, eds. 2016. Nature-based Solutions to address global societal challenges. Gland: IUCN.

    Google Scholar 

  • Couwenberg, J., and H. Joosten. 2005. Self organisation in raised bog patterning: The origin of microtope zonation and mesotope diversity. Journal of Ecology 93: 1238–1248.

    Article  Google Scholar 

  • Dargie, G.C., S.L. Lewis, I.T. Lawson, E.T.A. Mitchard, S.E. Page, Y.E. Bocko, and S.A. Ifo. 2017. Age, extent and carbon storage of the Central Congo Basin Peatland Complex. Nature 542: 86–90.

    Article  CAS  Google Scholar 

  • Draper, F.C.H., K.H. Roucoux, I.T. Lawson, E.T.A. Mitchard, E.N. Honorio Coronado, O. Lähteenoja, L.T. Montenegro, E. Valderrama Sandoval, et al. 2014. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environmental Research Letters 9: 124017.

    Article  CAS  Google Scholar 

  • Elshehawi, S., A. Espinoza Vilches, O. Aleksans, M. Pakalne, L. Wolejko, P. Schot, and A.P. Grootjans. 2020. Natural isotopes support groundwater origin as a driver of mire type and biodiversity in Slitere National Park. Latvia. Mires and Peat 26: 1–15.

    Google Scholar 

  • Feurdean, A., M. Gałka, G. Florescu, A.-C. Diaconu, I. Tantau, S. Kirpotin, and S.M. Hutchinson. 2019. 2000 Years of variability in hydroclimate and carbon accumulation in western Siberia and the relationship with large scale atmospheric circulation: A multiproxy peat record. Quaternary Science Review. https://doi.org/10.1016/j.quascirev.2019.105948.

    Article  Google Scholar 

  • Flanagan, N.E., H. Wang, S. Winton, and C.J. Richardson. 2020. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Global Change Biology. https://doi.org/10.1111/gcb.15102.

    Article  Google Scholar 

  • Frolking, S., J. Talbot, M.C. Jones, C.C. Treat, J.B. Kauffman, E.-S. Tuittila, and N. Roulet. 2011. Peatlands in the Earth’s 21st century climate system. Environmental Reviews 19: 371–396.

    Article  CAS  Google Scholar 

  • Frolking, S., J. Talbot, and Z.M. Subin. 2014. Exploring the relationship between peatland net carbon balance and apparent carbon accumulation rate at century to millennial time scales. The Holocene 24: 1021–1027.

    Article  Google Scholar 

  • Glaser, P.H., G.A. Wheeler, E. Gorham, and H.E. Wright Jr. 1981. The patterned peatlands of the Red Lake Peatland, northern Minnesota: Vegetation, water chemistry, and landforms. Journal of Ecology 69: 575–599.

    Article  CAS  Google Scholar 

  • Glaser, P.H., D.I. Siegel, A.S. Reeve, and J.P. Chanton. 2006. Hydrogeology of major peat basins in North America. In: I.P. Martini, A. Martínez Cortizas & W. Chesworth (eds) Peatlands: Evolution and records of environmental and climate changes, pp 347–376. Amsterdam: Elsevier.

  • Gorham, E. 1991. Northern peatlands: Role in carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.

    Article  Google Scholar 

  • Gretton, A., A.K., Yurlo, and G.V. Boere. 2002. Where does the Slender-billed Curlew nest, and what future does it have? British Birds 95: 334–344.

    Google Scholar 

  • Günther, A., A. Barthelmes, V. Huth, H. Joosten, G. Jurasinski, F. Koebsch, and J. Couwenberg. 2020. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nature Communications 11: 1644.

    Article  CAS  Google Scholar 

  • Halicki, W., and S. Kirpotin. 2018. The evolution of wetlands in West Siberian Lowlands from the Last Glacial Period to the Present. In Wetland: Function, services, importance and threats, ed. W. Halicki, 1–85. New York: Nova Science Publisher.

    Google Scholar 

  • Heinselman, M.L. 1963. Forest sites, bog processes, and peatland types in the Glacial Lake Agassiz Region, Minnesota. Ecological Monographs 33: 327–374. https://doi.org/10.2307/1950750.

    Article  Google Scholar 

  • Helbig, M., J.M. Waddington, P. Alekseychik, B.D. Amiro, M. Aurela, A.G. Barr, T.A. Black, P.D. Blanken, et al. 2020. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nature Climate Change. https://doi.org/10.1038/s41558-020-0763-7.

    Article  Google Scholar 

  • Hu, Y., N. Fernandez-Anez, T.E.L. Smith, and G. Rein. 2018. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire 27: 293–312. https://doi.org/10.1071/WF17084.

    Article  CAS  Google Scholar 

  • Inisheva, L.I., A.A. Zemtsov, and S.M. Novikov. 2011. Vasyugan Mire. Natural conditions, structure and functioning. Tomsk: Tomsk State Pedagogical University Press (in Russian).

    Google Scholar 

  • Inisheva, L.I., K.I. Kobak, and N.G. Inishev. 2017. Paludification on Vasyugan Mire. Contemporary Problems of Ecology 10: 105–110.

    Article  Google Scholar 

  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. T.F., Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, et al. Cambridge: Cambridge University Press.

  • Joosten, H. 2009. The global peatland CO2 picture. Peatland status and emissions in all countries of the World. Ede: Wetlands International.

    Google Scholar 

  • Joosten, H. 2016. Changing paradigms in the history of tropical peatland research. In Tropical peatland ecosystems, ed. M. Osaki and N. Tsuji, 33–48. Tokyo: Springer.

    Chapter  Google Scholar 

  • Joosten, H.. 2019. Permafrost peatlands: Losing ground in a warming world. In UN Environment: Frontiers 2018/2019. Emerging issues of environmental concern, ed. UNEP, 38–50. United Nations Environment Programme: Nairobi.

  • Joosten, H., A. Sirin, J. Couwenberg, J. Laine, and P. Smith. 2016. The role of peatlands in climate regulation. In Peatland restoration and ecosystem services: Science, policy and practice, ed. A. Bonn, T. Allott, M. Evans, H. Joosten, and R. Stoneman, 63–76. Cambridge: Cambridge University Press.

    Google Scholar 

  • Joosten, H., F. Tanneberger, and A. Moen, eds. 2017. Mires and peatlands of Europe—Status, distribution and conservation. Stuttgart: Schweizerbart Science Publishers.

    Google Scholar 

  • Kabanov, M.V., ed. 2012. The study of natural and climatic processes in the Great Vasyugan bog. Novosibirsk: RAS SB Publishing House (in Russian).

    Google Scholar 

  • Kharanzhevskaya, Yu.A., E.S. Voistinova, and A.A. Sinyutkina. 2020. Spatial and temporal variations in mire surface water chemistry as a function of geology, atmospheric circulation and zonal features in the south-eastern part of Western Siberia. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139343.

    Article  Google Scholar 

  • Kirpotin, S., A. Berezin, V. Bazanov, Y. Polishchuk, S. Vorobiov, N. Mironycheva-Tokoreva, N. Kosykh, I. Volkova, et al. 2009. Western Siberian wetlands as indicator and regulator of climate change on the global scale. International Journal of Environmental Studies 66: 409–421.

    Article  Google Scholar 

  • Kirpotin, S.N., T.V. Callaghan, O. Pokrovsky, J. Karlsson, S.N. Vorobiov, L.G. Kolesnichenko, I.G. Popravko, T.S. Kolesnikova, et al. 2018. Russian–EU collaboration via the mega-transect approach for large-scale projects: Cases of RF Federal Target Programme and SIWA JPI Climate EU Programme. International Journal of Environmental Studies 75: 385–394. https://doi.org/10.1080/00207233.2018.1429131.

    Article  Google Scholar 

  • Kopenkina, L.V. 2015. The history of peat in Russia. Tver’: TGTY (in Russian).

    Google Scholar 

  • Kuznetsov, N.I. 1915. On the mires of the Narym Territory of Tomsk Province. Bolotovedenie 1 (in Russian).

  • Lapshina, E. 2005. Spatial structure of the vegetation cover in the Vasyugan Mire. In Mires from Siberia to Tierra del Fuego, ed G. M. Steiner. Stapfia 85: 296–304.

    Google Scholar 

  • Lapshina, E., and F. Tanneberger. 2002. 716,000 ha Siberian minerotrophic mires soon under protection. IMCG Newsletter 2002–4: 24–25.

    Google Scholar 

  • Leifeld, J., C. Alewell, C. Bader, J.P. Krüger, C.W. Mueller, M. Sommer, M. Steffens, and S. Szidat. 2018. Pyrogenic carbon contributes substantially to carbon storage in intact and degraded northern peatlands. Land Degradation and Development 29: 2082–2091.

    Article  Google Scholar 

  • Leifeld, J., C. Wüst-Galley, and S. Page. 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change 9: 945–947.

    Article  CAS  Google Scholar 

  • Liss, O.L., L.I. Abramova, N.A. Avetov, N.A. Berezina, L.I. Inisheva, T.V. Kurnishkova, Z.A. Sluka, TYu. Tolpycheva, et al. 2001. Mire systems of Western Siberia and their environmental importance. Tula: Grifi K (in Russian).

    Google Scholar 

  • Marlier, M.E., T. Liu, K. Yu, J.J. Buonocore, S.N. Koplitz, R.S. DeFries, L.J. Mickley, D.J. Jacob, et al. 2019. Fires, smoke exposure, and public health: An integrative framework to maximize health benefits from peatland restoration. Geo Health. https://doi.org/10.1029/2019gh000191.

    Article  Google Scholar 

  • Martini, I.P. 2006. The cold-climate peatlands of the Hudson Bay Lowland, Canada: Brief overview of recent work. In Peatlands: Evolution and records of environmental and climate changes, ed. I.P. Martini, A. MartínezCortizas, and W. Chesworth, 53–84. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Minayeva, T. Yu., O.M. Bragg, and A.A. Sirin. 2017. Towards ecosystem-based restoration of peatland biodiversity. Mires and Peat 19 (Article 01): 1–36. http://mires-and-peat.net/pages/volumes/map19/map1901.php.

  • Page, S.E., J.O. Rieley, and C.J. Banks. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17: 798–818.

    Article  Google Scholar 

  • Parish, F., A. Sirin, D. Charman, H. Joosten, T. Minayeva, M. Silvius, and L. Stringer. 2008. Assessment on peatlands, biodiversity and climate change. Main Report. Kuala Lumpur/Wageningen: Global Environment Centre/Wetlands International.

    Google Scholar 

  • Peregon, A., S. Maksyutov, and Y. Yamagata. 2009a. An image-based inventory of the spatial structure of West Siberian wetlands. Environmental Research Letters 4: 045014. https://doi.org/10.1088/1748-9326/4/4/045014.

    Article  Google Scholar 

  • Peregon, A., M. Uchida, and Y. Yamagata. 2009b. Lateral extension in Sphagnum mires along the southern margin of the boreal region, Western Siberia. Environmental Research Letters 4: 045028. https://doi.org/10.1088/1748-9326/4/4/045028.

    Article  Google Scholar 

  • Pokrovsky, O.S., R.M. Manasypov, S.V. Loiko, I.A. Krickov, S.G. Kopysov, L.G. Kolesnichenko, S.N. Vorobyev and S.N. Kirpotin. 2016. Trace element transport in western Siberian rivers across a permafrost gradient. Journal of Geophysical Research: Biogeosciences 13: 1877–1900. https://doi.org/10.5194/bg-13-1877-2016.

    Article  CAS  Google Scholar 

  • Polak, E. 1933. Ueber Torf and Moor in Niederländisch Indien. Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam Afdeeling Natuurkunde (Tweede Sectie), Deel XXX: 1–85.

    Google Scholar 

  • Polishchuk, Y.M., A.N. Bogdanov, V.Y. Polishchuk, R.M. Manasypov, L.S. Shirokova, S.N. Kirpotin, and O.S. Pokrovsky. 2017. Size distribution, surface coverage, water, carbon, and metal storage of thermokarst lakes in the permafrost zone of the western Siberia lowland. Water. https://doi.org/10.3390/w9030228.

    Article  Google Scholar 

  • Sanderman, J., T. Hengl, and G.J. Fiske. 2017. Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of USA 114: 9575–9580.

    Article  CAS  Google Scholar 

  • Sanders, K. 2009. Bodies in the bog and the archaeological imagination. Chicago: The University of Chicago Press.

    Google Scholar 

  • Scharlemann, J.P.W., E.V.J. Tanner, R. Hiederer, and V. Kapos. 2014. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Management 5: 81–91.

    Article  CAS  Google Scholar 

  • Schröder, C., A. Thiele, S. Wang, Z. Bu, and H. Joosten. 2007. Hani-Mire—A percolation mire in Northeast China. Peatlands International 2007: 21–24.

    Google Scholar 

  • Semenova, N.M. 2005. Land use and conservation of the Great Vasyugan Mire. In Mires from Siberia to Tierra del Fuego, ed G. M. Steiner. Stapfia 85: 296–304.

    Google Scholar 

  • Semenova, N.M. 2014. Western Siberia in the context of global nature conservation concerns. International Journal of Environmental Studies 71: 595–604. https://doi.org/10.1080/00207233.2014.950525.

    Article  Google Scholar 

  • Serikova, S., O.S. Pokrovsky, H. Laudon, I.V. Krickov, A.G. Lim, R.M. Manasypov, and J. Karlsson. 2019. High carbon emissions from thermokarst lakes of Western Siberia. Nature Communications 10: 1552.

    Article  CAS  Google Scholar 

  • Sheng, Y., L.C. Smith, G.M. MacDonald, K.V. Kremenetski, K.E. Frey, A.A. Velichko, M. Lee, D.W. Beilman, et al. 2004. A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Global Biogeochemical Cycles 18: GB3004. https://doi.org/10.1029/2003GB002190.

    Article  CAS  Google Scholar 

  • Sirin, A., T. Minayeva, H. Joosten, and F. Tanneberger. 2018. Peatlands. In The IPBES regional assessment report on biodiversity and ecosystem services for Europe and Central Asia, ed. M. Rounsevell, M. Fischer, A. Torre-Marin Rando, and A. Mader, 217–220. Bonn: Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.

    Google Scholar 

  • Sjörs, H. 1963. Bogs and fens on Attawapiskat River, northern Ontario. Bulletin (National Museum of Canada) 186: 45–133.

    Google Scholar 

  • Tanneberger, F., C. Tegetmeyer, S. Busse, A. Barthelmes, S. Shumka, A. Moles Mariné, K. Jenderedjian, G.M. Steiner, et al. 2017. The peatland map of Europe. Mires and Peat 19 (22): 1–17.

    Google Scholar 

  • UN Environment. 2019. Global Environment Outlook—GEO-6: Summary for Policymakers. Nairobi: UN Environment. https://doi.org/10.1017/9781108639217.

    Book  Google Scholar 

  • Vaganov, E.A., E.F. Vedrova, S.V. Verkhovets, S.P. Efremov, T.T. Efremova, V.B. Kruglov, A.A. Onuchin, A.I. Sukhinin, et al. 2008. Forests and swamps of Siberia in the global carbon cycle. Contemporary Problems of Ecology 1: 168–182.

    Article  Google Scholar 

  • Vitt, D.H., L.A. Halsey, and B.J. Nicholson. 2005. The Mackenzie River Basin Wetland Complex. In The world’s largest wetlands: Ecology and conservation, ed. L.H. Fraser and P.A. Keddy, 218–254. Cambridge: Cambridge University Press.

    Google Scholar 

  • Volkova, I.I., K.S. Baikov, and A.I. Syso. 2010. Kuznetsk Alatau mires as filters for natural waters. Contemporary Problems of Ecology 3: 265–271. https://doi.org/10.1134/S1995425510030021.

    Article  Google Scholar 

  • Vompersky, S.E., A.I. Ivanova, O.P. Tsyganova, N.A. Valiaeva, T.V. Glukhova, F.I. Dubinin, and L.G. Markelova. 1994. Wet soils and mires in Russia and their carbon pool. Pochvovedenie 12: 17–25 (in Russian).

    Google Scholar 

  • Worrall, F., I.M. Boothroyd, R.L. Gardner, N.J.K. Howden, T.P. Burt, R. Smith, L. Mitchell, T. Kohler, et al. 2019. The impact of peatland restoration on local climate: Restoration of a cool humid island. Journal of Geophysical Research: Biogeosciences 12: 1696–1713. https://doi.org/10.1029/2019JG005156.

    Article  Google Scholar 

  • Yu, Z., F. Joos, T.K. Bauska, B.D. Stocker, H. Fischer, J. Loisel, V. Brovkin, G. Hugelius, et al. 2019. No support for carbon storage of >1000 GtC in northern peatlands. EarthArXiv reprints. https://doi.org/10.31223/osf.io/hynm7

Download references

Acknowledgements

SK and AP are grateful for support to the Russian Science Foundation 20-67-46018. AB is grateful for support to the State assignment of the Ministry of Science and Higher Education of the Russian Federation (Project No. 0721-2020-0019). SK is also grateful for support of the Russian Foundation for Basic Research in the Framework of Scientific Projects No. 18-05-60264. The reported study was partly funded by the and by RFBR and Government of the Khanty-Mansi Autonomous Area—Yugra according to the Research Project No. 18-44-860017. EL was supported by the grant of the Tyumen region Government in accordance with the Program of the World-Class West Siberian Interregional Scientific and Educational Center (National Project "Nauka”). AF acknowledges support from the German Research Foundation (grant no. FE-1096/6-1). Finally, we thank the TA INTERACT Programme and support of SecNet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Kirpotin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirpotin, S.N., Antoshkina, O.A., Berezin, A.E. et al. Great Vasyugan Mire: How the world’s largest peatland helps addressing the world’s largest problems. Ambio 50, 2038–2049 (2021). https://doi.org/10.1007/s13280-021-01520-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-021-01520-2

Keywords

Navigation