Skip to main content

Wildfires in the Siberian taiga

Abstract

The majority of area burned by wildfire are located in Siberia. Mainly low-intensity surface fires occur in larch forests, whereas in evergreen forests both surface and crown fires are observed. Warming has led to an increase in the frequency and area of wildfires that have reached the Arctic Ocean shore. However, wildfires are the most important factor in taiga dynamics; larch and Scots pine have evolved under conditions of periodic forest fires, thereby gaining a competitive advantage over non-fire adapted species; in the permafrost zone, periodic fires are a prerequisite for the dominance of larch. Wildfires support ecosystem health, biodiversity, and conservation; periodic wildfires decrease the danger of catastrophic wildfires. With an amplified rate of increase in fires, it is necessary to focus fire suppression on areas of high social, natural, and economic value, while allowing a greater number of wildfires to burn in the vast Siberian forest landscapes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

modified from Ponomarev et al. 2018c)

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Modified from Kharuk et al. (2008)

Fig. 7

Modified from Kharuk and Ponomarev (2020)

Fig. 8

Modified from Kharuk and Dvinskaya (2020)

Fig. 9
Fig. 10

Notes

  1. 1.

    https://tass.ru/sibir-news/2607517. Retrieved July 20, 2020.

  2. 2.

    https://www.kommersant.ru/doc/1673040. Retrieved July 20, 2020.

References

  1. Bartalev, S.A., F.V. Stytsenko, V.A. Egorov, and E.A. Lupyan. 2015. Satellite estimation of forest destruction in Russia from fires. Lesovedenie (Forestry) 2: 83–94 (in Russian).

    Google Scholar 

  2. Bondur, V.G., M.N. Tsidilina, V.L. Kladov, and K.A. Gordo. 2019. Irregular variability of spatiotemporal distributions of wildfires and emissions of harmful trace gases in Europe based on satellite monitoring data. Doklady Earth Sciences 485: 461–464. https://doi.org/10.1134/S1028334X19040202.

    CAS  Article  Google Scholar 

  3. Bondur, V.G., I.I. Mokhov, O.S. Voronova, and S.A. Sitnov. 2020. Satellite monitoring of Siberian wildfires and their effects: Features of 2019 anomalies and trends of 20-year changes. Doklady Earth Sciences 492: 370–375. https://doi.org/10.1134/S1028334X20050049.

    CAS  Article  Google Scholar 

  4. Cai, W., and J. Yang. 2016. High severity fire reduces early successional boreal larch forest aboveground productivity by shifting stand density in north-eastern China. International Journal of Wildland Fire 25: 861–875.

    Article  Google Scholar 

  5. Calef, M.P., A. Varvak, A.D. McGuire, F.S. Chapin III., and K.B. Reinhold. 2015. Recent changes in annual area burned in interior Alaska: The impact of fire management. Earth Interactions 19: 1–16. https://doi.org/10.1175/EI-D-14-0025.1.

    Article  Google Scholar 

  6. Callaghan, T.V., O.M. Shaduyko, and S.N. Kirpotin. 2021. Siberian environmental change. Special Issue. Ambio. Volume 50.

  7. Chapin, F.S., III., S.F. Trainor, O. Huntington, A.L. Lovecraft, E. Zavaleta, D.C. Natcher, A.D. McGuire, J.L. Nelson, et al. 2008. Increasing wildfire in Alaska’s boreal forest: Pathways to potential solutions of a wicked problem. BioScience 58: 531–540. https://doi.org/10.1641/B580609.

    Article  Google Scholar 

  8. Coogan, S.C.P., F.-N. Robinne, P. Jain, and M.D. Flannigan. 2019. Scientists’ warning on wildfire—a Canadian perspective. Canadian Journal of Forest Research 49: 1–9.

    Article  Google Scholar 

  9. Coogan, S.C.P., X. Cai, P. Jain, and M.D. Flannigan. 2020. Seasonality and trends in human- and lightning-caused wildfires ≥2 ha in Canada, 1959–2018. International Journal of Wildland Fire 29: 473–485. https://doi.org/10.1071/WF19129.

    Article  Google Scholar 

  10. Cushman C. 2020. Fanning the flame: Amazon and Australian fires. Mission: Water 7: 6–12.

  11. de Groot, W.J., A.S. Cantin, M.D. Flannigan, A.J. Soja, L.M. Gowman, and A. Newbery. 2013a. A comparison of Canadian and Russian boreal forest fire regimes. Forest Ecology and Management 294: 23–34. https://doi.org/10.1016/j.foreco.2012.07.033.

    Article  Google Scholar 

  12. de Groot, W.J., M.D. Flannigan, and A.S. Cantin. 2013b. Climate change impacts on future boreal fire regimes. Forest Ecology and Management 294: 35–44. https://doi.org/10.1016/j.foreco.2012.09.027.

    Article  Google Scholar 

  13. Euskirchen, E.S., C.W. Edgar, M.S. Bret-Harte, A. Kade, N. Zimov, and S. Zimov. 2017. Interannual and seasonal patterns of carbon dioxide, water, and energy fluxes from ecotonal and thermokarst-impacted ecosystems on carbon-rich permafrost soils in northeastern Siberia. Journal of Geophysical Research: Biogeosciences 122: 2651–2668. https://doi.org/10.1002/2017JG004070.

    CAS  Article  Google Scholar 

  14. Fedorov, E.N., Y.A. Mikhalev, and T.A. Ershova. 2003. Forest fire propagation as a method of reducing anthropogenic fire hazard. In Forest fire protection, reforestation and forest management, 40–46. Krasnoyarsk (in Russian).

  15. Flannigan, M.D. 2015. Fire evolution split by continent. Nature Geosciences 8: 167–168.

    CAS  Article  Google Scholar 

  16. Flannigan, M.D. 2019. Fighting fire with science. Nature 576: 328. https://doi.org/10.1038/d41586-019-03747-2.

    CAS  Article  Google Scholar 

  17. Flannigan, M., B. Stocks, M. Turetsky, and M. Wotton. 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology 15: 549–560.

    Article  Google Scholar 

  18. French, N.H.F., L.K. Jenkins, T.V. Loboda, M. Flannigan, R. Jandt, L.L. Bourgeau-Chavez, and M. Whitley. 2015. Fire in the tundra of Alaska: Past fire activity, future fire potential, and significance for land management and ecology. International Journal of Wildland Fire 24: 1045–1061. https://doi.org/10.1071/WF14167.

    Article  Google Scholar 

  19. Gauthier, S., P. Bernier, T. Kuuluvainen, A.Z. Shvidenko, and D.G. Schepaschenko. 2015. Boreal forest health and global change. Science 349: 819–822. https://doi.org/10.1126/science.aaa9092.

    CAS  Article  Google Scholar 

  20. Hanes, C.X., P. Wang, M.-A. Jain, J. Little. Parisien, and M. Flannigan. 2019. Fire regime changes in Canada over the last half century. Canadian Journal of Forest Research 49: 256–269.

    Article  Google Scholar 

  21. Im, S.T., V.I. Kharuk, and V.G. Lee. 2020. Migration of the northern evergreen needleleaf timberline in Siberia in the 21st century. Current Problems in Remote Sensing of the Earth from Space 17: 176–187. https://doi.org/10.21046/2070-7401-2020-17-1-176-187.

    Article  Google Scholar 

  22. Ivanov, V.A., and G.A. Ivanova. 2010. Wildfires from lightning in forests of Siberia. Novosibirsk: Nauka.

    Google Scholar 

  23. Ivanova, G.A., V.A. Ivanova, E.A. Kukavskaya, and A.J. Soja. 2010. The frequency of forest fires in Scots pine stands of Tuva, Russia. Environment Research Letters 5: 015002.

    Article  Google Scholar 

  24. Johnston, L.M., and M.D. Flannigan. 2018. Mapping Canadian wildland fire interface areas. International Journal of Wildland Fire 27: 1–14. https://doi.org/10.1071/WF16221.

    Article  Google Scholar 

  25. Joly, K., P.A. Duffy, and T.S. Rupp. 2012. Simulating the effects of climate change on fire regimes in Arctic biomes: Implications for caribou and moose habitat. Ecosphere 3: 36. https://doi.org/10.1890/ES12-00012.1.

    Article  Google Scholar 

  26. Kasischke, E.S., D.L. Verbyla, T.S. Rupp, A.D. McGuire, K.A. Murphy, R. Jandt, J.L. Barnes, E.E. Hoy, et al. 2010. Alaska's changing fire regime—implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research . 40: 1313–1324. https://doi.org/10.1139/X10-098.

    Article  Google Scholar 

  27. Kharuk, V.I., and O.A. Antamoshkina. 2017. Impact of silkmoth outbreak on Taiga wildfires. Contemporary Problems of Ecology 10: 556–562. https://doi.org/10.1134/S1995425517050055.

    Article  Google Scholar 

  28. Kharuk, V.I., and M.L. Dvinskaya. 2020. Climate-induced fire dynamics in the Siberian Arctic. In Regional problems of remote sensing. Proceedings of conference. Krasnoyarsk: Siberian Federal University (in Russian).

  29. Kharuk, V.I., and E.I. Ponomarev. 2017. Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia. Russian Journal of Ecology 48: 507–512. https://doi.org/10.1134/S1067413617060042.

    Article  Google Scholar 

  30. Kharuk, V.I., and E.I. Ponomarev. 2020. Wildfires and burns in Siberian taiga. Science from First Hands 87: 56–71 (in Russian).

    Google Scholar 

  31. Kharuk, V.I., M.L. Dvinskaya, and K.J. Ranson. 2005a. The spatiotemporal pattern of fires in Northern Taiga Larch Forests of Central Siberia. Russian Journal of Ecology 36: 302–311.

    Article  Google Scholar 

  32. Kharuk, V.I., M.L. Dvinskaya, K.J. Ranson, and S.T. Im. 2005b. Expansion of evergreen conifers to the larch-dominated zone and climatic trends. Russian Journal of Ecology 36: 164–170. https://doi.org/10.1007/S11184-0050055-5.

    Article  Google Scholar 

  33. Kharuk, V.I., K.J. Ranson, S.T. Im, and M.L. Dvinskaya. 2006. Forest-tundra larch forests and climatic trends. Russian Journal of Ecology 37: 291–298. https://doi.org/10.1134/S1067413606050018.

    Article  Google Scholar 

  34. Kharuk, V.I., K.J. Ranson, and M.L. Dvinskaya. 2007a. Evidence of evergreen conifer invasion into larch dominated forests during recent decades in Central Siberia. Eurasian Journal of Forest Research 10–12: 163–171.

    Google Scholar 

  35. Kharuk, V.I., E.S. Kasischke, and O.E. Yakubailik. 2007b. The spatial and temporal distribution of fires on Sakhalin Island, Russia. International Journal of Wildland Fire 16: 556–562.

    Article  Google Scholar 

  36. Kharuk, V.I., K.J. Ranson, and M.L. Dvinskaya. 2008. Wildfires dynamic in the larch dominance zone. Geophysical Research Letters 35: L01402. https://doi.org/10.1029/2007GL032291.

    Article  Google Scholar 

  37. Kharuk, V.I., K.J. Ranson, S.T. Im, and A.S. Vdovin. 2010a. Spatial distribution and temporal dynamics of high elevation forest stands in southern Siberia. Global Ecology and Biogeography Journal 19: 822–830.

    Article  Google Scholar 

  38. Kharuk, V.I., S.T. Im, M.L. Dvinskaya, and K.J. Ranson. 2010b. Climate-induced mountain treeline evolution in southern Siberia. Scandinavian Journal of Forest Research 25: 446–454.

    Article  Google Scholar 

  39. Kharuk, V.I., K.J. Ranson, M.L. Dvinskaya, and S.T. Im. 2011. Wildfires in northern Siberian larch dominated communities. Environmental Research Letters. https://doi.org/10.1088/1748-9326/6/4/045208.

    Article  Google Scholar 

  40. Kharuk, V.I., K.J. Ranson, and M.L. Dvinskaya. 2013a. Fire return intervals within the northern boundary of the larch forest in Central Siberia. International Journal of Wildland Fire 22: 207–211. https://doi.org/10.1071/WF11181.

    Article  Google Scholar 

  41. Kharuk, V.I., K.J. Ranson, S.T. Im, P.A. Oskorbin, and D.V. Ovchinnikov. 2013b. Tree Line structure and dynamics at the northern limit of the Larch Forest: Anabar Plateau, Siberia, Russia. Arctic, Antarctic, and Alpine Research 45: 526–537.

    Article  Google Scholar 

  42. Kharuk, V.I., K.J. Ranson, S.T. Im, and I.A. Petrov. 2015a. Climate-induced larch growth response within Central Siberian permafrost zone. Environmental Research Letters. https://doi.org/10.1088/1748-9326/10/12/125009.

    Article  Google Scholar 

  43. Kharuk, V.I., M.L. Dvinskaya, I.A. Petrov, S.T. Im, and K.J. Ranson. 2015b. Larch forests of Middle Siberia: Long-term trends in fire return intervals. Environmental Research Letters 16: 2389–2397. https://doi.org/10.1007/s10113-016-0964-9.

    Article  Google Scholar 

  44. Kharuk, V.I., A.T. Im, and I.A. Petrov. 2018a. Warming hiatus and evergreen conifers in Altay-Sayan Region, Siberia. Journal of Mountain Science. https://doi.org/10.1007/s11629-018-5071-6.

    Article  Google Scholar 

  45. Kharuk, V.I., K.J. Ranson, I.A. Petrov, M.L. Dvinskaya, S.T. Im, and A.S. Golyukov. 2018b. Larch (Larix dahurica Turcz) growth response to climate change in the Siberian Permafrost Zone. Regional Environmental Change. https://doi.org/10.1007/s10113-018-1401.

    Article  Google Scholar 

  46. Kharuk, V.I., A.S. Shushpanov, I.A. Petrov, D.A. Demidko, S.T. Im, and A.A. Knorre. 2019. Fir (Abies sibirica Ledeb.) mortality in mountain forests of the Eastern Sayan Ridge, Siberia. Contemporary Problems of Ecology 12: 299–309. https://doi.org/10.1134/S199542551904005X.

    Article  Google Scholar 

  47. Kharuk, V.I., S.T. Im, and V.V. Soldatov. 2020. Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains. Journal of Mountain Science 17: 1891–1900. https://doi.org/10.1007/s11629-020-5989-3.

    Article  Google Scholar 

  48. Kitzberger, T., D.A. Falk, A.L. Westerling, and T.W. Swetnam. 2017. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12: e0188486. https://doi.org/10.1371/journal.pone.0188486.

    CAS  Article  Google Scholar 

  49. Kovacs, K., K. Ranson, G. Sun, and V. Kharuk. 2004. The relationship of the Terra MODIS fire product and anthropogenic features in the Central Siberian Landscape. Earth Interactions. 8: 1–25.

    Article  Google Scholar 

  50. Krylov, A., J.L. McCarty, P. Potapov, T. Loboda, A. Tyukavina, S. Turubanova, and M.C. Hansen. 2014. Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environmental Research Letters 9: 1–8. https://doi.org/10.1088/1748-9326/9/10/105007.

    Article  Google Scholar 

  51. Kukavskaya, E., A. Soja, A. Petkov, E. Ponomarev, G. Ivanova, and S. Conard. 2013. Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption. Canadian Journal of Forest Research 43: 493–506. https://doi.org/10.1139/cjfr-2012-0367.

    CAS  Article  Google Scholar 

  52. Kukavskaya, E.A., L.V. Buryak, E.G. Shvetsov, S.G. Conard, and O.P. Kalenskaya. 2016. The impact of increasing fire frequency on forest transformations in southern Siberia. Forest Ecology and Management 382: 222–230. https://doi.org/10.1016/j.foreco.2016.10.015.

    Article  Google Scholar 

  53. Kutsenogiy, K.P., Yu.N. Samsonov, T.V. Churkina, A.V. Ivanov, and V.A. Ivanov. 2003. The content of trace elements in aerosol emissions during fires in the boreal forests of central Siberia. Optics of the atmosphere and ocean 16: 461–465 (in Russian).

    Google Scholar 

  54. Mack, M.C., M.S. Bret-Harte, T.N. Hollingsworth, R.R. Jandt, E.A. Schuur, G.R. Shaver, and D.L. Verbyla. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475: 489–492.

    CAS  Article  Google Scholar 

  55. Malevsky-Malevich, S.P., E.K. Molkentin, E.D. Nadyozhina, and O.B. Shklyarevich. 2008. An assessment of potential change in wildfire activity in the Russian boreal forest zone induced by climate warming during the twenty-first century. Climate Change 86: 463–474.

    Article  Google Scholar 

  56. Mekonnen, Z.A., W.J. Riley, J.T. Randerson, R.F. Grant, and B.M. Rogers. 2019. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nature Plants 5: 952–958. https://doi.org/10.1038/s41477-019-0495-8.

    Article  Google Scholar 

  57. Melvin, A.M., J. Murray, B. Boehlert, J.A. Martinich, L. Rennels, and T.S. Rupp. 2017. Estimating wildfire response costs in Alaska’s changing climate. Climatic Change 141: 783–795. https://doi.org/10.1007/s10584-017-1923-2.

    Article  Google Scholar 

  58. Mokhov, I.I., and A.V. Chernokulsky. 2010. Regional model assessments of forest fire risks in the Asian part of Russia under climate change. Geography and Natural Resources 2: 120–126 (in Russian).

    Google Scholar 

  59. Moskovchenko, D.V., S.P. Aref’ev, M.D. Moskovchenko, and A.A. Yurtaev. 2020. Spatiotemporal analysis of wildfires in the forest tundra of Western Siberia. Contemporary Problems of Ecology 13: 193–203. https://doi.org/10.1134/S1995425520020092.

    Article  Google Scholar 

  60. Overland, J., J. Walsh, and V. Kattsov. 2017. Trends and feedbacks. In Snow, water, ice and Permafrost in the Arctic (SWIPA), 9–23. Oslo: Arctic Monitoring and Assessment Programme (AMAP).

  61. Podur, J., and B.M. Wotton. 2010. Will climate change overwhelm fire management capacity? Ecological Modelling 221: 1301–1309.

    Article  Google Scholar 

  62. Ponomarev, E.I., and V.I. Kharuk. 2016. Wildfire occurrence in forests of the Altai-Sayan region under current climate changes. Contemporary Problems of Ecology 9: 29–36. https://doi.org/10.1134/S199542551601011X.

    Article  Google Scholar 

  63. Ponomarev, E.I., V.I. Kharuk, and K.J. Ranson. 2016. Wildfires dynamics in Siberian Larch forests. Forests 7: 125. https://doi.org/10.3390/f7060125.

    Article  Google Scholar 

  64. Ponomarev, E.I., E.G. Shvetsov, and V.I. Kharuk. 2018a. The intensity of wildfires in fire emissions estimates. Russian Journal of Ecology 49: 492–499. https://doi.org/10.1134/S1067413618060097.

    Article  Google Scholar 

  65. Ponomarev, E.I., E.G. Shvetsov, and Y.O. Usataya. 2018b. Determination of the energy properties of wildfires in Siberia by remote sensing. Izvestiya of Atmospheric and Oceanic Physics 54: 979–985. https://doi.org/10.1134/S000143381809030X.

    Article  Google Scholar 

  66. Ponomarev, E.I., A.S. Skorobogatova, and T.V. Ponomareva. 2018c. Wildfire occurrence in Siberia and seasonal variations in heat and moisture supply. Russian Meteorology and Hydrology 43: 456–463. https://doi.org/10.3103/S1068373918070051.

    Article  Google Scholar 

  67. Ponomarev, E.I., E.G. Shvetsov, K. Yu, and K.Y. Litvintsev. 2019. Calibration of estimates on direct wildfire emissions from remote sensing data. Izvestiya, Atmospheric and Oceanic Physics 55: 1065–1072. https://doi.org/10.1134/S0001433819090408.

    Article  Google Scholar 

  68. Ponomarev, E.I., O.V. Masyagina, K.Y. Litvintsev, T.V. Ponomareva, E.G. Shvetsov, and K.A. Finnikov. 2020. The effect of post-fire disturbances on a seasonally thawed layer in the permafrost larch forests of Central Siberia. Forests 11: 790. https://doi.org/10.3390/f11080790.

    Article  Google Scholar 

  69. Reisen, F., S.M. Duran, M. Flannigan, C. Elliot, and K. Rideout. 2015. Wildfire smoke and public health risk. International Journal of Wildland Fire 24: 1029–1044.

    CAS  Article  Google Scholar 

  70. Rogers, B.M., A.J. Soja, M.L. Goulden, and J.T. Randerson. 2015. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nature Geoscience 8: 228–234.

    CAS  Article  Google Scholar 

  71. Rodríguez-Cardona, B.M., A.A. Coble, A.S. Wymore, R. Kolosov, D.C. Podgorski, P. Zito, R.G.M. Spencer, A.S. Prokushkin, et al. 2020. Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Nature Communications 10: 8722. https://doi.org/10.1038/s41598-020-65520-0.

    CAS  Article  Google Scholar 

  72. Romps, D., J. Seeley, D. Vollaro, and J. Molinari. 2014. Projected increase in lightning strikes in the United States due to global warming. Science 346: 851–854. https://doi.org/10.1126/science.1259100.

    CAS  Article  Google Scholar 

  73. Rosleskhoz. 2019. Official Information. Retrieved 1 July 2020 from http://rosleshoz.gov.ru/activity/forest_security_and_protection/fires/zones (in Russian)

  74. Sapozhnikov, V.M., and A.A. Krechetov. 1982. Meteorological and geophysical aspects of underground cables lightning damage. In Atmospheric electricity, ed. A. Evteeva, 256–258. Leningrad: Gidrometheoizdat.

    Google Scholar 

  75. Sato, H., H. Kobayashi, G. Iwahana, and T. Ohta. 2016. Endurance of larch forest ecosystems in eastern Siberia under warming trends. Ecology and Evolution 6: 5690–5704. https://doi.org/10.1002/ece3.2285).

    Article  Google Scholar 

  76. Shuman, J.K., H.H. Shugart, and T.L. O’Halloran. 2011. Sensitivity of Siberian larch forests to climate change. Global Change Biology 17: 2370–2384. https://doi.org/10.1111/j.1365-2486.2011.02417.x.

    Article  Google Scholar 

  77. Shvidenko, A.Z., and D.G. Schepaschenko. 2013. Climate change and wildfires in Russia. Contemporary Problems of Ecology 6: 50–61. https://doi.org/10.1134/S199542551307010X.

    Article  Google Scholar 

  78. Sofronov, M.A., A.V. Volokitina, and T. Kajimoto. 1999. Ecology of wildland fires and permafrost: Their interdependence in the northern part of Siberia. In Proceedings of the eighth symposium on the joint Siberian Permafrost studies between Japan and Russia in 1999, 19–20 January 2000, ed. G. Ioue and A. Takenaka, 211–218. Tsukuba, Japan.

  79. Soja, A.J., W.R. Cofer, H.H. Shugart, A. Sukhinin, P. Stackhouse, D. McRae, and S. Conard. 2004. Estimating fire emissions and disparities in boreal Siberia (1998–2002). Journal of Geophysical Research 109: 1–22. https://doi.org/10.1029/2004JD004570.

    Article  Google Scholar 

  80. Swetnam, T., and C. Baisan. 1996. Historical fire regime patterns in the southwestern United States since AD 1700. In Fire effects in southwestern forest: Proceedings of the 2nd La Mesa fire symposium, ed. C.D. Allen, 11–32. USDA Forest Service, Rocky Mountain Research Station, General Technical Report RM-GTR-286.

  81. Todd S.K., and H.A. Jewkes. 2006 Wildland fire in Alaska: A history of organized fire suppression and management in the Last Frontier. University of Alaska Fairbanks, Agricultural and Forestry Experiment Station Bulletin No. 114.

  82. Tsvetkov, P.A. 2005. Adaptation of Dahurian larch to fires in the middle Taiga zone of Central Siberia. Siberian Ekological Journal 1: 117–129 (in Russian).

    Google Scholar 

  83. Tymstra, C., B. Stocks, X. Cai, and M. Flannigan. 2020. Wildfire management in Canada: Review, challenges and opportunities. Progress in Disaster Science 5: 10004. https://doi.org/10.1016/j.pdisas.2019.100045.

    Article  Google Scholar 

  84. Vasiliev, A.A., D.S. Drozdov, and A.G. Gravis. 2020. Permafrost degradation in the Western Russian Arctic. Environmental Research Letters. https://doi.org/10.1088/1748-9326/ab6f12.

    Article  Google Scholar 

  85. Veraverbeke, S., B. Rogers, M. Goulden, R. Jandt, C. Miller, E. Wiggins, and J. Randerson. 2017. Lightning as a major driver of recent large fire years in North American boreal forests. Nature Climate Change 7: 529–534. https://doi.org/10.1038/nclimate3329.

    Article  Google Scholar 

  86. Wolken, J.M., T.N. Hollingsworth, T.S. Rupp, F.S. Chapin III, S.F. Trainor, T.M. Barrett, P.F. Sullivan, A.D. McGuire, et al. 2011. Evidence and implications of recent and projected climate change in Alaska’s forest ecosystems. Ecosphere 2: 124. https://doi.org/10.1890/ES11-00288.1.

    Article  Google Scholar 

  87. Wooster, M.J., and Y.H. Zhang. 2004. Boreal forest fires burn less intensely in Russia than in North America. Geophysical Research Letters 31: L20505. https://doi.org/10.1029/2004GL020805.

    Article  Google Scholar 

  88. Wotton, B.M., M.D. Flannigan, and G.A. Marshall. 2017. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environmental Research Letters 12: 095003.

    Article  Google Scholar 

  89. Yue, X., L.J. Mickley, J.A. Logan, R.C. Hudman, M.V. Martin, and R.M. Yantosca. 2015. Impact of 2050 climate change on North American wildfire: Consequences for ozone air quality. Atmospheric Chemistry and Physics 15: 10033–10055. https://doi.org/10.5194/acp-15-10033-2015.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study is supported in part by RFBR projects No. 18-05-00432 and No. 18-41-242003.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Viacheslav I. Kharuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 3842 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kharuk, V.I., Ponomarev, E.I., Ivanova, G.A. et al. Wildfires in the Siberian taiga. Ambio 50, 1953–1974 (2021). https://doi.org/10.1007/s13280-020-01490-x

Download citation

Keywords

  • Forest fires
  • Siberian wildfire
  • Wildfire dynamics
  • Wildfire impacts in Siberia
  • Wildfire in permafrost zone