Skip to main content

Risks to the stratospheric ozone shield in the Anthropocene

This article belongs to Ambio’s 50th Anniversary Collection. Theme: Ozone Layer


Crutzen (1974) and Crutzen and Ehhalt (1977) presented two key papers in Ambio that in Ambioexemplify how science first revealed to humankind the potential for damage to our ozone shield in the Anthropocene. Crutzen’s (1974) review is a sweeping summary of the risks to the ozone layer from supersonic aircraft, chlorofluorocarbons, as well as nuclear weapons testing and nuclear war. Crutzen and Ehhalt (1977) described how the nitrous oxide produced from fertilizers could pose another threat to the stability of the stratospheric ozone layer. The two papers are part of a body of influential scientific work that led to the pioneering Montreal Protocol to Protect the Earth’s Ozone Layer to phase out production of chlorofluorocarbons (in 1987), as well as national decisions that slowed or stopped production of supersonic planes (in the 1970s). They remain guideposts today for ongoing international negotiations regarding reducing emissions from fertilizer and limiting nuclear testing.

This is a preview of subscription content, access via your institution.

Fig. 1


  • Bais, A.F., R.M. Lucas, J.F. Bornman, C.E. Williamson, B. Sulzberger, A.T. Austin, S.R. Wilson, A.L. Andrady, et al. 2018. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochemical & Photobiological Sciences 17: 127–179.

    CAS  Article  Google Scholar 

  • Bates, D.R., and P.B. Hays. 1967. Atmospheric nitrous oxide. Planetary and Space Science 15: 189–197.

    CAS  Article  Google Scholar 

  • Birmpili, T. 2018. Montreal Protocol at 30: The governance structure, the evolution, and the Kigali Amendment. Comptes Rendus Geoscience 350: 425–431.

    Article  Google Scholar 

  • Crutzen, P.J. 1970. The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society 96: 320–325.

    Article  Google Scholar 

  • Crutzen, P.J. 1972. SST’s: A threat to the earth’s ozone shield. Ambio 1: 41–51.

    CAS  Google Scholar 

  • Crutzen, P.J. 1974. Estimates of possible variations in total ozone due to natural causes and human activities. Ambio 3: 201–210.

    CAS  Google Scholar 

  • Crutzen, P.J., and D.H. Ehhalt. 1977. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio 6: 112–117.

    CAS  Google Scholar 

  • Daniel, J.S., E.L. Fleming, R.W. Portmann, G.J.M. Velders, C.H. Jackman, and A.R. Ravishankara. 2010. Options to accelerate ozone recovery: Ozone and climate benefits. Atmospheric Chemistry & Physics 10: 7697–7707.

    CAS  Article  Google Scholar 

  • Dhomse, S.S., W. Feng, S.A. Montzka, R. Hossaini, J. Keeble, J.A. Pyle, J.S. Daniel, and M.P. Chipperfield. 2019. Delay in recovery of the Antarctic ozone hole from unexpected CFC-11 emissions. Nature Communications 10: 1–12.

    Article  Google Scholar 

  • Dotto, L., and H. Schiff. 1978. The ozone war. New York: Doubleday Books.

    Google Scholar 

  • Drake, F., and M. Purvis. 2001. The effect of supersonic transports on the global environment: A debate revisited. Science, Technology, & Human Values 26: 501–528.

    Article  Google Scholar 

  • Fleming, E.L., P.A. Newman, Q. Liang, and J.S. Daniel. 2020. The impact of continuing CFC-11 emissions on stratospheric ozone. Journal of Geophysical Research: Atmospheres 125: e2019JD031849.

    CAS  Google Scholar 

  • Heffer, P., and M. Prud’homme. 2016. Global nitrogen fertilizer demand and supply: trend, current level, and outlook. Proceedings of the 2016 International Nitrogen Initiative Conference, “Solutions to improve nitrogen use efficiency for the world”, 4–8, 1 December 2016, Melbourne, Australia.

  • Johnston, H. 1971. Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173: 517–522.

    CAS  Article  Google Scholar 

  • Johnston, H.S. 1977. Analysis of the independent variables in the perturbation of stratospheric ozone by nitrogen fertilizers. Journal of Geophysical Research 82: 1767–1772.

    CAS  Article  Google Scholar 

  • Junge, C.E. 1974. Residence time and variability of tropospheric trace gases. Tellus 26: 477–488.

    CAS  Google Scholar 

  • Kanter, D., D.L. Mauzerall, A.R. Ravishankara, J.S. Daniel, R.W. Portmann, P.M. Grabiel, W.R. Moomaw, and J.N. Galloway. 2013. A post-Kyoto partner: Considering the stratospheric ozone regime as a tool to manage nitrous oxide. Proceedings of the National Academy of Sciences of the United States of America 110: 4451–4457.

    CAS  Article  Google Scholar 

  • Mills, M.J., O.B. Toon, R.P. Turco, D.E. Kinnison, and R.R. Garcia. 2008. Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences of the United States of America 105: 5307–5312.

    CAS  Article  Google Scholar 

  • Molina, M.J., and F.S. Rowland. 1974. Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone. Nature 249: 810–812.

    CAS  Article  Google Scholar 

  • Montzka, S.A., G.S. Dutton, P. Yu, E. Ray, R.W. Portmann, J.S. Daniel, L. Kuijpers, B.D. Hall, et al. 2018. An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature 557: 413–417.

    CAS  Article  Google Scholar 

  • Morrisette, P.M. 1989. The evolution of policy responses to stratospheric ozone depletion. Natural Resources Journal 29: 793–820.

    Google Scholar 

  • Newman, P.A., L.D. Oman, A.R. Douglass, E.L. Fleming, S.M. Frith, M.M. Hurwitz, S.R. Kawa, C.H. Jackman, et al. 2009. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated? Atmospheric Chemistry & Physics 9: 2113–2128.

    CAS  Article  Google Scholar 

  • New York Times. 1978. Most aerosols face a Swedish ban. Accepted 9 Aug 2020.

  • Rigby, M., S. Park, T. Saito, L.M. Western, A.L. Redington, X. Fang, S. Henne, A.J. Manning, et al. 2019. Increase in CFC-11 emissions from eastern China based on atmospheric observations. Nature 569: 546–550.

    CAS  Article  Google Scholar 

  • Slaper, H., G.J. Velders, J.S. Daniel, F.R. de Gruijl, and J.C. van der Leun. 1996. Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements. Nature 384: 256–258.

    CAS  Article  Google Scholar 

  • Solomon, S., D.J. Ivy, D. Kinnison, M.J. Mills, R.R. Neely III, and A. Schmidt. 2016. Emergence of healing in the Antarctic ozone layer. Science 353 (6296): 269–274.

    CAS  Article  Google Scholar 

  • UNEP. 2013. Drawing down N2O to protect climate and the ozone layer. A UNEP Synthesis Report. United Nations Environment Programme (UNEP), Nairobi, Kenya.

  • WMO (World Meteorological Organization). 2018. Scientific Assessment of Ozone Depletion: 2018. Global Ozone Research and Monitoring Project—Report No. 58, 588 pp., Geneva, Switzerland.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Susan Solomon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solomon, S. Risks to the stratospheric ozone shield in the Anthropocene. Ambio 50, 44–48 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Chlorofluorocarbons
  • Fertilizers
  • Montreal Protocol
  • Nuclear
  • Ozone
  • Policy