Skip to main content
Log in

Disruption of the global nitrogen cycle: A grand challenge for the twenty-first century

This article belongs to Ambio’s 50th Anniversary Collection. Theme: Eutrophication

  • Perspective
  • Published:
Ambio Aims and scope Submit manuscript


Disruption of the global nitrogen cycle by humans results primarily from activities associated with food and energy production. Since the middle of the twentieth century, human activities have more than doubled inputs of nitrogen to the Earth’s ecosystems. This new nitrogen is in chemically and biologically active forms (reactive N) and moves through the environment causing an array of health and environmental problems. Research published in Ambio for the past three decades has been documenting this major global-scale problem and has catalyzed the formation of a science-led initiative, the International Nitrogen Initiative (INI), which has informed policies to manage the global nitrogen cycle. Currently, gaps and opportunities in nitrogen pollution policies still exist and require new interdisciplinary science to help to place the nitrogen management challenge in the context of the other environmental grand challenges of our time including climate change and biodiversity loss because their solutions will be interconnected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others


  • Abrol, Y.P., T.K. Adhya, V.P. Aneja, N. Raghuram, H. Pathak, U. Kulshrestha, C. Sharma, and B. Singh (eds.). 2017. The Indian nitrogen assessment: Sources of reactive nitrogen, environmental and climate effects, management options, and policies. Duxford: Woodhead Publishing (Elsevier).

    Google Scholar 

  • AfSIS. 2016.

  • Andersen, J.H., J. Carstensen, D.J. Conley, K. Dromph, V. Fleming-Lehtinen, and B.G. Gustafsson. 2017. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biological Reviews Cambridge Philosophical Society 92: 135–149.

    Article  Google Scholar 

  • Battye, W., V.P. Aneja, and W.H. Schlesinger. 2017. Is nitrogen the next carbon? Earth’s Future.

    Article  Google Scholar 

  • Breitburg, D., L.A. Levin, A. Oschlies, M. Grégoire, F.P. Chavez, D.J. Conley, V. Garcon, D. Golbert, et al. 2018. Declining oxygen in the global ocean and coastal waters. Science.

    Article  Google Scholar 

  • Caraco, N., and J. Cole. 1999. Human impact on nitrate export: An analysis using major world rivers. Ambio 28: 167–170.

    Google Scholar 

  • Conley, D.J., J. Carstensen, J. Aigars, P. Axe, E. Bonsdorff, T. Eremina, B.-M. Haahti, C. Humborg, et al. 2011. Hypoxia is increasing in the coastal zone of the Baltic Sea. Environmental Science and Technology 45: 6777–6783.

    Article  CAS  Google Scholar 

  • Daily, G. (ed.). 1997. Nature’s services: Societal dependence on natural ecosystems, 412. Washington, DC: Island Press.

    Google Scholar 

  • Davidson, E.A., M.B. David, J.N. Galloway, C.L. Goodale, R. Haeuber, J.A. Harrison, R.W. Howarth, D.B. Jaynes, et al. 2012. Excess nitrogen in the U.S. environment: Trends, risks, and solutions. Issues in Ecology, Report Number 15, Ecological Society of America.

  • Denning, G., P. Kabambe, P. Sanchez, A. Malik, R. Flor, R. Harawa, P. Nkhoma, C. Zamba, et al. 2009. Input subsidies to improve smallholder maize productivity in Malawi: Toward an African green revolution. PLOS Biology.

    Article  Google Scholar 

  • Elmgren, R. 1989. Man’s impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio 18: 26–332.

    Google Scholar 

  • Eswaran, H., R. Almaraz, E. van den Berg, and P. Reich. 1997. An assessment of the soil resources of Africa in relation to productivity. Geoderma 77: 1–18.

    Article  Google Scholar 

  • Galloway, J.N. 1998. The global nitrogen cycle: Changes and consequences. Environmental Pollution 102: 15–24.

    Article  CAS  Google Scholar 

  • Galloway, J.N., J.D. Aber, J.W. Erisman, S.P. Seitzinger, R.W. Howarth, E.B. Cowling, and B.J. Cosby. 2003. The nitrogen cascade. BioScience 53: 341–356.

    Article  Google Scholar 

  • Galloway, J.N., and E.B. Cowling. 2002. Reactive nitrogen and the world: 200 years of change. Ambio 31: 64–71.

    Article  Google Scholar 

  • Gu, B., X. Ju, J. Chang, Y. Ge, and P.M. Vitousek. 2016. Integrated reactive nitrogen budgets and future trends in China. PNAS 112: 8792–8797.

    Article  CAS  Google Scholar 

  • HELCOM. 2013. Approaches and methods for eutrophication target setting in the Baltic Sea region. Baltic Sea environment proceedings 133: 147.

  • Huddell, L., G. Galford, K.L. Tully, C. Crowley, C.A. Palm, C. Neill, J.E. Hickman, and D.N.L. Menge. 2020. Meta-analysis on the potential for increasing nitrogen losses from intensifying tropical agriculture. Global Change Biology 26: 1668–1680.

    Article  Google Scholar 

  • IPCC. 2013. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Eds. T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley. Cambridge: Cambridge University Press.

  • Kanter, D.R., O. Chodos, O. Nordland, M. Rutigliano, and W. Winiwarter. 2020. Gaps and opportunities in nitrogen pollution policies around the world. Nature Sustainability.

    Article  Google Scholar 

  • Kanter, D.R., W. Winiwarter, B.L. Bodirsky, L. Bouwman, E. Boyer, S. Buckle, J.E. Compton, T. Dalgaard, et al. 2020. A framework for nitrogen futures in the shared socioeconomic pathways. Global Environmental Change 61: 102029.

    Article  Google Scholar 

  • Lelieveld, J., J.S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer. 2017. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525: 367–384.

    Article  CAS  Google Scholar 

  • Matson, P., K.A. Lohse, and S.J. Hall. 2002. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. Ambio 32: 113–119.

    Article  Google Scholar 

  • Murray, C.J., B. Muller-Karulis, J. Carstenen, D.J. Conley, D.J. Conley, B.G. Gustafsson, and J.H. Andersen. 2019. Past, present and future eutrophication status of the Baltic Sea. Frontiers in Marine Science.

    Article  Google Scholar 

  • Ravishankara, A.R., J.S. Daniel, and R.W. Portmann. 2009. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21 century. Science 326: 123–125.

    Article  CAS  Google Scholar 

  • Reis, S., M. Bekunda, C.M. Howard, N. Karanja, W. Winiwarter, X. Yan, A. Bleeker, and M.A. Sutton. 2016. Synthesis and review: Tackling the nitrogen management challenge: From global to local scales. Environmental Research Letters.

    Article  Google Scholar 

  • Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin III., E. Lambin, T.M. Lenton, M. Scheffer, et al. 2009. A safe operating space for humanity. Nature 461: 472–475.

    Article  CAS  Google Scholar 

  • Russo, T.A., K. Tully, C. Palm, and C. Neill. 2017. Leaching losses from Kenyan maize cropland receiving different rates of nitrogen fertilizer. Nutrient Cycling in Agroecosystems 108: 195–209.

    Article  CAS  Google Scholar 

  • Sanchez, P.A. 2019. Properties and management of soils in the tropics, 2nd ed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sanchez, P.A., G.L. Denning, and G. Nziguheba. 2009. The African green revolution moves forward. Food Security 1: 37–44.

    Article  Google Scholar 

  • Sutton, M.A., C.M. Howard, J.W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. Grinsven, and B. Grizzetti (eds.). 2011. The European nitrogen assessment. Cambridge: Cambridge Univ Press.

    Google Scholar 

  • Tomich, T.P., S.B. Brodt, R.A. Dahlgren, and K.M. Snow (eds.). 2016. The California nitrogen assessment: Challenges and solutions for people, agriculture, and the environment. Oakland, CA: Univ of Calif Press.

    Book  Google Scholar 

  • UN Population Prospects. 2019.

  • UNEP. 2007. Global environmental outlook 4 (GEO-4). Nairobi: United Nations Environ Program.

    Google Scholar 

  • UNEP. 2019. Sustainable nitrogen management resolution. UNEP/EA.4/Res.14. United Nations Environ. Program, Nairobi.

Download references


I acknowledge support from The Ecosystems Center of the Marine Biological Laboratory in Woods Hole, Massachusetts, my academic home for more than four decades.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jerry M. Melillo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melillo, J.M. Disruption of the global nitrogen cycle: A grand challenge for the twenty-first century. Ambio 50, 759–763 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: