Skip to main content

Advertisement

Log in

A social–ecological framework and toolbox to help strengthening functional agrobiodiversity-supported ecosystem services at the landscape scale

  • Perspective
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Functional agrobiodiversity (FAB) has severely declined during the last decades. Current efforts to reinforce FAB are mainly focused on single-actor, parcel-based measures, whereas multi-actor landscape approaches are supposed to be more effective. In this paper, we propose a social–ecological framework that structures how different land users at both the parcel and landscape level interact with FAB as a natural resource. Furthermore, we introduce 1 m2 FAB gardens as an interactive multipurpose measurement tool to gather data on ecosystem services in collaboration with land users. The presented action research approach provides new insights on motivations and interests of different land users in FAB and how knowledge exchange can result in a higher motivation to invest in FAB. Using a case study in Flanders, we illustrate the FAB-garden concept and highlight its strengths and necessary considerations to properly complement other research approaches in this social–ecological system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albrecht, M., B. Schmid, Y. Hautier, and C.B. Müller. 2012. Diverse pollinator communities enhance plant reproductive success. Proceedings of the Royal Society B: Biological Sciences 279: 4845–4852.

    Google Scholar 

  • ALV. 2018. Landbouwgebruikspercelen (Agricultural land use parcels map).

  • Angelstam, P., M. Manton, M. Elbakidze, F. Sijtsma, M. Cristian, A. Noa, A. Pedro, B. Peter, et al. 2019. LTSER platforms as a place-based transdisciplinary research infrastructure : Learning landscape approach through evaluation. Landscape Ecology 6: 1461–1484.

    Google Scholar 

  • Barnaud, C., E. Corbera, R. Muradian, N. Salliou, C. Sirami, A. Vialatte, J.P. Choisis, N. Dendoncker, et al. 2018. Ecosystem services, social interdependencies, and collective action: A conceptual framework. Ecology and Society 23: 15.

    Google Scholar 

  • Batáry, P., A. Báldi, D. Kleijn, and T. Tscharntke. 2011. Landscape-moderated biodiversity effects of agri-environmental management: A meta-analysis. Proceedings of the Royal Society of London B: Biological Sciences 278: 1894–1902.

    Google Scholar 

  • Batáry, P., L.V. Dicks, D. Kleijn, and W.J. Sutherland. 2015. The role of agri-environment schemes in conservation and environmental management. Conservation Biology 29: 1006–1016.

    Google Scholar 

  • Bianchi, F.J.J.A., V. Mikos, L. Brussaard, B. Delbaere, and M.M. Pulleman. 2013. Opportunities and limitations for functional agrobiodiversity in the European context. Environmental Science and Policy 27: 223–231.

    Google Scholar 

  • Cardinale, B.J., J.E. Duffy, A. Gonzalez, D.U. Hooper, C. Perrings, P. Venail, A. Narwani, G.M. Mace, et al. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.

    CAS  Google Scholar 

  • Chaplin-Kramer, R., M.E. O’Rourke, E.J. Blitzer, and C. Kremen. 2011. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecology Letters 14: 922–932.

    Google Scholar 

  • Creswell, J.W. 2009. Research design: Qualitative, quantitative, and mixed methods approaches, 3rd ed. Thousand Oaks: Sage.

    Google Scholar 

  • Dainese, M., S. Montecchiari, T. Sitzia, M. Sigura, and L. Marini. 2017. High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. Journal of Applied Ecology 54: 380–388.

    Google Scholar 

  • Dainese, M., E.A. Martin, M.A. Aizen, M. Albrecht, I. Bartomeus, R. Bommarco, L.G. Carvalheiro, R. Chaplin-kramer, et al. 2019. A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances 5: 1–13.

    Google Scholar 

  • Dickinson, J.L., J. Shirk, D. Bonter, R. Bonney, R.L. Crain, J. Martin, T. Phillips, and K. Purcell. 2012. The current state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment 10: 291–297.

    Google Scholar 

  • van Dijk, W.F.A., A.M. Lokhorst, F. Berendse, and G.R. de Snoo. 2016. Factors underlying farmers’ intentions to perform unsubsidised agri-environmental measures. Land Use Policy 59: 207–216.

    Google Scholar 

  • Duffy, J.E., C.M. Godwin, and B.J. Cardinale. 2017. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549: 261–264.

    CAS  Google Scholar 

  • ELN-FAB. 2012. Functional agrobiodiversity: Nature serving Europe’s farmers. Tilburg, the Netherlands.

  • Emmerson, M., M.B. Morales, J.J. Oñate, P. Batáry, F. Berendse, J. Liira, T. Aavik, I. Guerrero, et al. 2016. How agricultural intensification affects biodiversity and ecosystem services. In Advances in ecological research, vol. 55, ed. A.J. Dumbrell, R.L. Kordas, and G. Woodward, 43–97. Oxford: Academic Press.

    Google Scholar 

  • Enqvist, J.P., M. Tengö, and Ö. Bodin. 2020. Are bottom-up approaches good for promoting social–ecological fit in urban landscapes? Ambio 49: 49–61.

    Google Scholar 

  • Gonthier, D.J., K.K. Ennis, S. Farinas, H.-Y. Hsieh, A.L. Iverson, P. Batáry, J. Rudolphi, T. Tscharntke, et al. 2014. Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society of London B: Biological Sciences 281: 20141358.

    Google Scholar 

  • Happe, A.K., F. Riesch, V. Rösch, R. Gallé, T. Tscharntke, and P. Batáry. 2018. Small-scale agricultural landscapes and organic management support wild bee communities of cereal field boundaries. Agriculture, Ecosystems and Environment 254: 92–98.

    Google Scholar 

  • Hass, A.L., Y. Clough, L. Brachmann, P. Batáry, H. Behling, and T. Tscharntke. 2019. Maize-dominated landscapes reduce bumblebee colony growth through pollen diversity loss. Journal of Applied Ecology 56: 294–304.

    Google Scholar 

  • Herbst, C., S. Arnold-Schwandner, T. Meiners, M.K. Peters, C. Rothenwöhrer, J. Steckel, N. Wäschke, C. Westphal, et al. 2017. Direct and indirect effects of agricultural intensification on a host-parasitoid system on the ribwort plantain (Plantago lanceolata L.) in a landscape context. Landscape Ecology 32: 2015–2028.

    Google Scholar 

  • Holzschuh, A., I. Steffan-Dewenter, D. Kleijn, and T. Tscharntke. 2007. Diversity of flower-visiting bees in cereal fields: Effects of farming system, landscape composition and regional context. Journal of Applied Ecology 44: 41–49.

    Google Scholar 

  • Jackson, L.E., M.M. Pulleman, L. Brussaard, K.S. Bawa, G.G. Brown, I.M. Cardoso, P.C. de Ruiter, L. García-Barrios, et al. 2012. Social–ecological and regional adaptation of agrobiodiversity management across a global set of research regions. Global Environmental Change 22: 623–639.

    Google Scholar 

  • Jonsson, M., C.S. Straub, R.K. Didham, H.L. Buckley, B.S. Case, R.J. Hale, C. Gratton, and S.D. Wratten. 2015. Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. Journal of Applied Ecology 52: 1274–1282.

    Google Scholar 

  • Karp, D.S., R. Chaplin-Kramer, T.D. Meehan, E.A. Martin, F. DeClerck, H. Grab, C. Gratton, L. Hunt, et al. 2018. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proceedings of the National Academy of Sciences 115: 7863–7870.

    Google Scholar 

  • Kerselaers, E., E. Rogge, E. Vanempten, L. Lauwers, and G. Van Huylenbroeck. 2013. Changing land use in the countryside: Stakeholders’ perception of the ongoing rural planning processes in Flanders. Land Use Policy 32: 197–206.

    Google Scholar 

  • Kleijn, D. 2013. Agrarisch natuurbeheer: Wat kost het, wat levert het op en hoe kan het beter? De Levende Natuur Maart: 51–55.

  • Kleijn, D., and W.J. Sutherland. 2003. How effective are European agri-environment schemes in conserving and promoting biodiversity? Journal of Applied Ecology 40: 947–969.

    Google Scholar 

  • Kleijn, D., F. Kohler, A. Báldi, P. Batáry, E.D. Concepción, Y. Clough, M. Díaz, D. Gabriel, et al. 2009. On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B: Biological Sciences 276: 903–909.

    CAS  Google Scholar 

  • Knop, E., E.D. Concepción, D. Kleijn, E.J.P. Marshall, J. Verhulst, D. Gabriel, A. Holzschuh, Y. Clough, et al. 2012. Interactive effects of landscape context constrain the effectiveness of local agri-environmental management. Journal of Applied Ecology 49: 695–705.

    Google Scholar 

  • Lakeman-Fraser, P., L. Gosling, A.J. Moffat, S.E. West, R. Fradera, L. Davies, M.A. Ayamba, and R. Wal. 2016. To have your citizen science cake and eat it? Delivering research and outreach through Open Air Laboratories (OPAL). BMC Ecology 16: 57–70.

    Google Scholar 

  • Landis, D.A. 2017. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology 18: 1–12.

    Google Scholar 

  • Lastra-Bravo, X.B., C. Hubbard, G. Garrod, and A. Tolón-Becerra. 2015. What drives farmers’ participation in EU agri-environmental schemes?: Results from a qualitative meta-analysis. Environmental Science and Policy 54: 1–9.

    Google Scholar 

  • Lefebvre, M., M. Espinosa, S. Gomez y Paloma, M.L. Paracchini, A. Piorr, and I. Zasada. 2015. Agricultural landscapes as multi-scale public good and the role of the Common Agricultural Policy. Journal of Environmental Planning and Management 58: 2088–2112.

    Google Scholar 

  • Lescourret, F., D. Magda, G. Richard, A.F. Adam-Blondon, M. Bardy, J. Baudry, I. Doussan, B. Dumont, et al. 2015. A social–ecological approach to managing multiple agro-ecosystem services. Current Opinion in Environmental Sustainability 14: 68–75.

    Google Scholar 

  • Maes, J., C. Liquete, A. Teller, M. Erhard, M.L. Paracchini, J.I. Barredo, B. Grizzetti, A. Cardoso, et al. 2016. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14–23.

    Google Scholar 

  • Marshall, E.J., T.M. West, and D. Kleijn. 2006. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agriculture, Ecosystems & Environment 113: 36–44.

    Google Scholar 

  • Martin, E.A., M. Dainese, Y. Clough, A. Báldi, R. Bommarco, V. Gagic, M.P.D. Garratt, A. Holzschuh, et al. 2019. The interplay of landscape composition and configuration: New pathways to manage functional biodiversity and agroecosystem services across Europe. Ecology Letters 22: 1083–1094.

    Google Scholar 

  • Moon, K., V.M. Adams, and B. Cooke. 2019. Shared personal reflections on the need to broaden the scope of conservation social science. People and Nature 1: 426–434.

    Google Scholar 

  • Newig, J., and O. Fritsch. 2009. Environmental governance: Participatory, multi-level—And effective? Environmental Policy and Governance 19: 197–214.

    Google Scholar 

  • Opdam, P., I. Coninx, A. Dewulf, E. Steingröver, C. Vos, and M. van der Wal. 2015. Framing ecosystem services: Affecting behaviour of actors in collaborative landscape planning? Land Use Policy 46: 223–231.

    Google Scholar 

  • Ostrom, E. 2009. A general framework for analyzing sustainability of social–ecological systems. Science 325: 419–422.

    CAS  Google Scholar 

  • Pasher, J., S.W. Mitchell, D.J. King, L. Fahrig, A.C. Smith, and K.E. Lindsay. 2013. Optimizing landscape selection for estimating relative effects of landscape variables on ecological responses. Landscape Ecology 28: 371–383.

    Google Scholar 

  • Pocock, M.J., D.S. Chapman, L.J. Sheppard, and H.E. Roy. 2014. A strategic framework to support the implementation of citizen science for environmental monitoring. Final report to SEPA. Oxfordshire: Centre for Ecology & Hydrology.

    Google Scholar 

  • Potschin, M.B., and R.H. Haines-Young. 2011. Ecosystem services: Exploring a geographical perspective. Progress in Physical Geography 35: 575–594.

    Google Scholar 

  • Prager, K. 2015. Agri-environmental collaboratives for landscape management in Europe. Current Opinion in Environmental Sustainability 12: 59–66.

    Google Scholar 

  • Primdahl, J., E. Andersen, S. Swaffield, and L. Kristensen. 2013. Intersecting dynamics of agricultural structural change and urbanisation within european rural landscapes: Change patterns and policy implications. Landscape Research 38: 799–817.

    Google Scholar 

  • Reason, P., and H. Bradbury. 2001. Handbook of action research. London: Sage.

    Google Scholar 

  • Reed, M.S., A. Graves, N. Dandy, H. Posthumus, K. Hubacek, J. Morris, C. Prell, C.H. Quinn, et al. 2009. Who’s in and why? A typology of stakeholder analysis methods for natural resource management. Journal of Environmental Management 90: 1933–1949.

    Google Scholar 

  • Renn, O. 2006. Participatory processes for designing environmental policies. Land Use Policy 23: 34–43.

    Google Scholar 

  • Rusch, A., R. Chaplin-Kramer, M.M. Gardiner, V. Hawro, J. Holland, D. Landis, C. Thies, T. Tscharntke, et al. 2016. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis. Agriculture, Ecosystems & Environment 221: 198–204.

    Google Scholar 

  • Scheper, J., A. Holzschuh, M. Kuussaari, S.G. Potts, M. Rundlöf, H.G. Smith, and D. Kleijn. 2013. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss—A meta-analysis. Ecology Letters 16: 912–920.

    Google Scholar 

  • Schirmel, J., M. Albrecht, P.-M. Bauer, L. Sutter, S.C. Pfister, and M.H. Entling. 2018. Landscape complexity promotes hoverflies across different types of semi-natural habitats in farmland. Journal of Applied Ecology 55: 1–12.

    Google Scholar 

  • Schulte, L.A., J. Niemi, M.J. Helmers, M. Liebman, J.G. Arbuckle, D.E. James, R.K. Kolka, M.E. O’Neal, et al. 2017. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn-soybean croplands. Proceedings of the National Academy of Sciences 114: 11247–11252.

    CAS  Google Scholar 

  • Sirami, C., N. Gross, A.B. Baillod, C. Bertrand, R. Carrié, A. Hass, L. Henckel, P. Miguet, et al. 2019. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proceedings of the National Academy of Sciences 116: 201906419.

    Google Scholar 

  • Tscharntke, T., A.M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecology Letters 8: 857–874.

    Google Scholar 

  • van Herwaarden, G., H. Baas, J. M. P. Salazar, B. Pedroli, and I. Gotzman. 2017. International Conference on Landscape Observatories. In UNISCAPE En-Route. Vol. 2.

  • Verhoeve, A., V. Dewaelheyns, E. Kerselaers, E. Rogge, and H. Gulinck. 2015. Virtual farmland: Grasping the occupation of agricultural land by non-agricultural land uses. Land Use Policy 42: 547–556.

    Google Scholar 

  • Westerink, J., R. Jongeneel, N. Polman, K. Prager, J. Franks, P. Dupraz, and E. Mettepenningen. 2017. Collaborative governance arrangements to deliver spatially coordinated agri-environmental management. Land Use Policy 69: 175–192.

    Google Scholar 

  • Winqvist, C., J. Ahnström, and J. Bengtsson. 2012. Effects of organic farming on biodiversity and ecosystem services: Taking landscape complexity into account. Annals of the New York Academy of Sciences 1249: 191–203.

    Google Scholar 

  • Zasada, I., R. Berges, J. Hilgendorf, and A. Piorr. 2013. Horsekeeping and the peri-urban development in the Berlin Metropolitan Region. Journal of Land Use Science 8: 199–214.

    Google Scholar 

Download references

Acknowledgements

Special thanks to the volunteering citizen scientists for their efforts. FG was funded by the Research Foundation Flanders (FWO) with a SB Grant (1S82419N). The BEL-Landscape research observatory is supported by the Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) and Ghent University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederik Gerits.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1058 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerits, F., Messely, L., Reubens, B. et al. A social–ecological framework and toolbox to help strengthening functional agrobiodiversity-supported ecosystem services at the landscape scale. Ambio 50, 360–374 (2021). https://doi.org/10.1007/s13280-020-01382-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-020-01382-0

Keywords

Navigation