Skip to main content

Drivers of deforestation and degradation for 28 tropical conservation landscapes

Abstract

Analysing the drivers of deforestation and forest degradation in conservation landscapes can provide crucial information for conservation management. While rates of forest loss can be measured through remote sensing, on the ground information is needed to confirm the commodities and actors behind deforestation. We administered a questionnaire to Wildlife Conservation Society’s landscape managers to assess the deforestation drivers in 28 tropical conservation landscapes. Commercial and subsistence agriculture were the main drivers of deforestation, followed by settlement expansion and infrastructure development. Rice, rubber, cassava and maize were the crops most frequently cited as drivers of deforestation in these emblematic conservation landscapes. Landscape managers expected deforestation trends to continue at similar or greater magnitude in the future, calling for urgent measures to mitigate these trends.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Ahrends, A., P.M. Hollingsworth, A.D. Ziegler, J.M. Fox, H. Chen, Y. Su, and J. Xu. 2015. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environmental Change 34: 48–58. https://doi.org/10.1016/j.gloenvcha.2015.06.002.

    Article  Google Scholar 

  2. Armenteras, D., J.M. Espelta, N. Rodríguez, and J. Retana. 2017. Deforestation dynamics and drivers in different forest types in Latin America: Three decades of studies (1980–2010). Global Environmental Change 46: 139–147. https://doi.org/10.1016/j.gloenvcha.2017.09.002.

    Article  Google Scholar 

  3. Austin, K.G., A. Mosnier, J. Pirker, I. McCallum, S. Fritz, and P.S. Kasibhatla. 2017. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 69: 41–48. https://doi.org/10.1016/j.landusepol.2017.08.036.

    Article  Google Scholar 

  4. Barber, C.P., M.A. Cochrane, C.M. Souza, and W.F. Laurance. 2014. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biological Conservation 177: 203–209. https://doi.org/10.1016/j.biocon.2014.07.004.

    Article  Google Scholar 

  5. Barbier, E.B., J.C. Burgess, and A. Grainger. 2010. The forest transition: Towards a more comprehensive theoretical framework. Land Use Policy 27: 98–107. https://doi.org/10.1016/j.landusepol.2009.02.001.

    Article  Google Scholar 

  6. Barlow, J., G.D. Lennox, J. Ferreira, E. Berenguer, A.C. Lees, R. Mac Nally, J.R. Thomson, S.F.D.B. Ferraz, et al. 2016. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535: 144–147. https://doi.org/10.1038/nature18326.

    CAS  Article  Google Scholar 

  7. Bennett-Curry, A., Y. Malhi, and M. Menton. 2013. Leakage effects in natural resource supply chains: A case study from the Peruvian commercial charcoal market. International Journal of Sustainable Development and World Ecology 20: 336–348. https://doi.org/10.1080/13504509.2013.804892.

    Article  Google Scholar 

  8. Carrasco, L.R., E.L. Webb, W.S. Symes, L.P. Koh, and N.S. Sodhi. 2017. Global economic trade-offs between wild nature and tropical agriculture. PLoS Biology 15: 1–23. https://doi.org/10.1371/journal.pbio.2001657.

    CAS  Article  Google Scholar 

  9. Carter, S., M. Herold, V. Avitabile, S. De Bruin, V. De Sy, L. Kooistra, and M.C. Rufino. 2018. Agriculture-driven deforestation in the tropics from 1990-2015: Emissions, trends and uncertainties. Environmental Research Letters 13: 1–13. https://doi.org/10.1088/1748-9326/aa9ea4.

    Article  Google Scholar 

  10. Dang, D.K.D., A.C. Patterson, and L.R. Carrasco. 2019. An analysis of the spatial association between deforestation and agricultural field sizes in the tropics and subtropics. PLoS ONE 14: 1–14. https://doi.org/10.1371/journal.pone.0209918.

    CAS  Article  Google Scholar 

  11. De Alban, J.D.T., G.M. Connette, P. Oswald, and E.L. Webb. 2018. Combined Landsat and L-band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sensing 10: 306. https://doi.org/10.3390/rs10020306.

    Article  Google Scholar 

  12. De Sy, V., M. Herold, F. Achard, R. Beuchle, J.G.P.W. Clevers, E.L. And, and L. Verchot. 2015. Land use patterns and related carbon losses following deforestation in South America. Environmental Research Letters 10: 124004. https://doi.org/10.1088/1748-9326/10/12/124004.

    Article  Google Scholar 

  13. FAO. 2015. Global forest resources assessment 2015 desk reference. Food and Agriculture Organization of the United Nations.

  14. Finer, M., and S. Novoa. 2015. MAAP Synthesis # 1: Patterns and Drivers of Deforestation in the Peruvian Amazon We present a preliminary analysis of current patterns and drivers of deforestation in the Peruvian Amazon. This analysis is.

  15. Folke, C., H. Österblom, J. Jouffray, E.F. Lambin, W.N. Adger, M. Scheffer, B.I. Crona, M. Nyström, et al. 2019. Transnational corporations and the challenge of biosphere stewardship. Nature Ecology and Evolution. 3: 1396–1403. https://doi.org/10.1038/s41559-019-0978-z.

    Article  Google Scholar 

  16. Geist, H.J., and E.F. Lambin. 2002. Proximate causes and underlying driving forces of tropical deforestation. BioScience 52: 143–150. https://doi.org/10.1641/0006-3568(2002)052%5b0143:pcaudf%5d2.0.co;2.

    Article  Google Scholar 

  17. Gibbs, H.K. 2010. Gesundheitliche beeinträchtigung durch häusliche schimmelpilzbelastungen. PNAS 107: 16732–16737. https://doi.org/10.1073/pnas.0910275107.

    Article  Google Scholar 

  18. Gibson, L., T.M. Lee, L.P. Koh, B.W. Brook, T.A. Gardner, J. Barlow, C.A. Peres, C.J.A. Bradshaw, et al. 2011. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478: 378–381. https://doi.org/10.1038/nature10425.

    CAS  Article  Google Scholar 

  19. Global Canopy. 2018. Retrieved 20 September, 2018 from https://www.globalcanopy.org/what-we-do/supply-chains/trase.

  20. Godar, J., T.A. Gardner, E.J. Tizado, and P. Pacheco. 2015. Correction for Godar et al., Actor-specific contributions to the deforestation slowdown in the Brazilian Amazon. Proceedings of the National Academy of Sciences 112: E3089–E3089. https://doi.org/10.1073/pnas.1508418112.

    CAS  Article  Google Scholar 

  21. Gunarso, P., F. Agus, B. H. Sahardjo, N. Harris, M. Van Noordwijk, and T. J. Killeen. 2013. Historical Co2 emissions from land use and land use change from the oil palm industry in Indonesia, Malaysia and Papua New Guinea. Reports from the Technical Panels of the 2 nd Greenhouse Gas Working Group of the Roundtable on Sustainable Palm Oil (RSPO), 65–88 pp. https://doi.org/10.1111/ijpo.12051.

  22. Hansen, M.C., P.V. Potapov, R. Moore, M. Hancher, S.A. Turubanova, A. Tyukavina, D. Thau, S.V. Stehman, et al. 2013. High-resolution global maps of 21st-century forest cover change. Science 342: 850–853. https://doi.org/10.1126/science.1244693.

    CAS  Article  Google Scholar 

  23. Henders, S., M. Ostwald, V. Verendel, and P. Ibisch. 2018. Do national strategies under the UN biodiversity and climate conventions address agricultural commodity consumption as deforestation driver? Land Use Policy 70: 580–590. https://doi.org/10.1016/j.landusepol.2017.10.043.

    Article  Google Scholar 

  24. Houghton, R.A. 2012. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Current Opinion in Environmental Sustainability 4: 597–603. https://doi.org/10.1016/j.cosust.2012.06.006.

    Article  Google Scholar 

  25. Jones, K.R., O. Venter, R.A. Fuller, J.R. Allan, S.L. Maxwell, P.J. Negret, and J.E.M. Watson. 2018. One-third of global protected land is under intense human pressure. Science 360: 788–791. https://doi.org/10.1126/science.aap9565.

    CAS  Article  Google Scholar 

  26. Kissinger, G., M. Herold, and V. De Sy. 2012. Drivers of Deforestation and Forest Degradation. A synthesis report for REDD + Policymakers. 48. https://doi.org/10.1016/j.rse.2010.01.001.

  27. Laurance, W.F. 2012. Condición física, adiposidad y autoconcepto en adolescentes. Estudio piloto. Revista de Psicologia del Deporte 22: 453–461. https://doi.org/10.1038/nature11318.

    CAS  Article  Google Scholar 

  28. Laurance, W.F., A. Peletier-Jellema, B. Geenen, H. Koster, P. Verweij, P. Van Dijck, T.E. Lovejoy, J. Schleicher, et al. 2015. Reducing the global environmental impacts of rapid infrastructure expansion. Current Biology 25: R259–R262. https://doi.org/10.1016/j.cub.2015.02.050.

    CAS  Article  Google Scholar 

  29. Laurance, W.F., J. Sayer, and K.G. Cassman. 2014. Agricultural expansion and its impacts on tropical nature. Trends in Ecology & Evolution 29: 107–116. https://doi.org/10.1016/j.tree.2013.12.001.

    Article  Google Scholar 

  30. Lawrence, D., and K. Vandecar. 2015. Effects of tropical deforestation on climate and agriculture. Nature Climate Change 5: 27–36. https://doi.org/10.1038/nclimate2430.

    Article  Google Scholar 

  31. Lee, J.S.H., S. Abood, J. Ghazoul, B. Barus, K. Obidzinski, and L.P. Koh. 2014. Environmental impacts of large-scale oil palm enterprises exceed that of smallholdings in Indonesia. Conservation Letters 7: 25–33. https://doi.org/10.1111/conl.12039.

    Article  Google Scholar 

  32. Lewis, S.L., D.P. Edwards, and D. Galbraith. 2015. Increasing human dominance of tropical forests. Science 349: 827–832. https://doi.org/10.1126/science.aaa9932.

    CAS  Article  Google Scholar 

  33. MacUra, B., L. Secco, and A.S. Pullin. 2015. What evidence exists on the impact of governance type on the conservation effectiveness of forest protected areas? Knowledge base and evidence gaps. Environmental Evidence 4: 24. https://doi.org/10.1186/s13750-015-0051-6.

    Article  Google Scholar 

  34. Margono, B.A., P.V. Potapov, S. Turubanova, F. Stolle, and M.C. Hansen. 2014. Primary forest cover loss in indonesia over 2000–2012. Nature Climate Change 4: 730–735. https://doi.org/10.1038/nclimate2277.

    Article  Google Scholar 

  35. Miettinen, J., D.L.A. Gaveau, and S.C. Liew. 2018. Comparison of visual and automated oil palm mapping in Borneo. International Journal of Remote Sensing 40: 8174–8185. https://doi.org/10.1080/01431161.2018.1479799.

    Article  Google Scholar 

  36. Nelson, A., and K.M. Chomitz. 2011. Effectiveness of strict vs multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6: e22722. https://doi.org/10.1371/journal.pone.0022722.

    CAS  Article  Google Scholar 

  37. Overbeck, G.E., E. Vélez-Martin, F.R. Scarano, T.M. Lewinsohn, C.R. Fonseca, S.T. Meyer, S.C. Müller, P. Ceotto, et al. 2015. Conservation in Brazil needs to include non-forest ecosystems. Diversity and Distributions 21: 1455–1460. https://doi.org/10.1111/ddi.12380.

    Article  Google Scholar 

  38. Phumee, P., A. Pagdee, and J. Kawasaki. 2018. Energy crops, livelihoods, and legal deforestation: A case study at Phu Wiang National Park, Thailand. Journal of Sustainable Forestry 37: 120–138. https://doi.org/10.1080/10549811.2017.1318292.

    Article  Google Scholar 

  39. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org/.

  40. Ravikumar, A., R.R. Sears, P. Cronkleton, M. Menton, and M. Pérez-Ojeda del Arco. 2017. Is small-scale agriculture really the main driver of deforestation in the Peruvian Amazon? Moving beyond the prevailing narrative. Conservation Letters 10: 170–177. https://doi.org/10.1111/conl.12264.

    Article  Google Scholar 

  41. Robinson, B.E., Y.J. Masuda, A. Kelly, M.B. Holland, C. Bedford, M. Childress, D. Fletschner, E.T. Game, et al. 2018. Incorporating land tenure security into conservation. Conservation Letters 11: 1–12. https://doi.org/10.1111/conl.12383.

    Article  Google Scholar 

  42. Ruf, F., G. Schroth, and K. Doffangui. 2015. Climate change, cocoa migrations and deforestation in West Africa: What does the past tell us about the future? Sustainability Science 10: 101–111. https://doi.org/10.1007/s11625-014-0282-4.

    Article  Google Scholar 

  43. Spracklen, B.D., M. Kalamandeen, D. Galbraith, E. Gloor, and D.V. Spracklen. 2015. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10: 1–17. https://doi.org/10.1371/journal.pone.0143886.

    CAS  Article  Google Scholar 

  44. Stibig, H.J., F. Achard, S. Carboni, R. Raši, and J. Miettinen. 2014. Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences 11: 247–258. https://doi.org/10.5194/bg-11-247-2014.

    Article  Google Scholar 

  45. Tegegne, Y.T., M. Lindner, K. Fobissie, and M. Kanninen. 2016. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy 51: 312–324. https://doi.org/10.1016/j.landusepol.2015.11.024.

    Article  Google Scholar 

  46. Tritsch, I., and F.M. Le Tourneau. 2016. Population densities and deforestation in the Brazilian Amazon: New insights on the current human settlement patterns. Applied Geography 76: 163–172. https://doi.org/10.1016/j.apgeog.2016.09.022.

    Article  Google Scholar 

  47. UN Comtrade (United Nations) database, 2014–2017. 2018. Retrieved from https://comtrade.un.org/.

  48. Vásquez-Grandón, A., P.J. Donoso, and V. Gerding. 2018. Forest degradation: When is a forest degraded? Forests 9: 1–13. https://doi.org/10.3390/f9110726.

    Article  Google Scholar 

  49. Venter, O., E.W. Sanderson, A. Magrach, J.R. Allan, J. Beher, K.R. Jones, H.P. Possingham, W.F. Laurance, et al. 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications 7: 1–11. https://doi.org/10.1038/ncomms12558.

    CAS  Article  Google Scholar 

  50. Warren-Thomas, E., P.M. Dolman, and D.P. Edwards. 2015. Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conservation Letters 8: 230–241. https://doi.org/10.1111/conl.12170.

    Article  Google Scholar 

  51. Watson, J.E.M., N. Dudley, D.B. Segan, and M. Hockings. 2014. The performance and potential of protected areas. Nature 515: 67–73. https://doi.org/10.1038/nature13947.

    CAS  Article  Google Scholar 

  52. Weiss, D.J., A. Nelson, H.S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, et al. 2018. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553: 333–336. https://doi.org/10.1038/nature25181.

    CAS  Article  Google Scholar 

  53. Woods, K. 2012. The political ecology of rubber production in Myanmar: An overview: 1–66.

  54. World Database on Protected Areas (WDPA). 2018. Retrieved 20 June, 2018, from https://www.protectedplanet.net/c/world-database-on-protected-areas.

Download references

Acknowledgements

We would like to acknowledge the support received from the Wildlife Conservation Society for the surveys conducted. We would also like to thank the Department of Biological Sciences of the National University of Singapore and the Government of Singapore for providing the NUS-IRP scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Manjari Jayathilake.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 998 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jayathilake, H.M., Prescott, G.W., Carrasco, L.R. et al. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio 50, 215–228 (2021). https://doi.org/10.1007/s13280-020-01325-9

Download citation

Keywords

  • Agricultural commodities
  • Drivers of deforestation
  • Protected landscapes
  • Wildlife conservation