Advertisement

Ambio

, Volume 48, Issue 11, pp 1290–1303 | Cite as

Farmers’ preferences for nutrient and climate-related agri-environmental schemes: A cross-country comparison

  • Berit HaslerEmail author
  • Mikolaj Czajkowski
  • Katarina Elofsson
  • Line Block Hansen
  • Maria Theresia Konrad
  • Helle Ørsted Nielsen
  • Olli Niskanen
  • Tea Nõmmann
  • Anders Branth Pedersen
  • Kaja Peterson
  • Helen Poltimäe
  • Tobias Häggmark Svensson
  • Katarzyna Zagórska
Ecosystem Governance in the Baltic Sea

Abstract

We use data from a survey of 2439 farmers in 5 countries around the Baltic Sea (Denmark, Estonia, Finland, Poland and Sweden) to investigate their preferences for adopting agricultural practices aimed at reducing nutrient leaching and greenhouse gas emissions. The measures considered are set-aside, catch crops and reduced fertilization. Contracts vary with respect to the area enrolled, contract length, possibility of premature termination, availability of professional advice and compensation. We quantitatively describe farmers’ preferences in terms of their willingness-to-accept compensation for specific attributes of these contracts, if implemented. The results vary substantially between farm types (farmers’ characteristics) and between the 5 countries, and support differentiation of contract obligations and payments to improve the uptake of Agri-Environmental Schemes. The results can be readily used to improve the design of country-specific nutrient reduction policies, in accordance with the next Common Agricultural Policy.

Keywords

Agri-environmental schemes Baltic Sea Choice experiment Farmers’ preferences Willingness to accept 

Notes

Acknowledgements

This research was funded by BONUS GO4BALTIC (BONUS, Art 185), funded jointly by the EU and national funding institutions in Denmark (the Innovation Fund), Estonia (Estonian Research Council ETAG), Finland (Academy of Finland), Poland (NCBR) and Sweden (FORMAS). The research has also received funding from Stockholm University Baltic Sea Center—project Baltic Eye. MC gratefully acknowledges the support of the National Science Centre of Poland (Sonata 10, 2015/19/D/HS4/01972). KZ gratefully acknowledges the support of the National Science Centre of Poland (Preludium 10, 2015/19/N/HS4/03365).

Supplementary material

13280_2019_1242_MOESM1_ESM.pdf (277 kb)
Supplementary material 1 (PDF 277 kb)

References

  1. Adams, V.M., R.L. Pressey, and N. Stoeckl. 2014. Estimating landholders’ probability of participating in a stewardship program, and the implications for spatial conservation priorities. PLoS ONE 9: e97941.  https://doi.org/10.1371/journal.pone.0097941.CrossRefGoogle Scholar
  2. Ahtiainen, H., J. Artell, M. Czajkowski, B. Hasler, L. Hasselström, A. Huhtala, J. Meyerhoff, J.C.R. Smart, et al. 2014. Benefits of meeting nutrient reduction targets for the Baltic Sea – a contingent valuation study in the nine coastal states. Journal of Environmental Economics and Policy 3: 278–305.  https://doi.org/10.1080/21606544.2014.901923. CrossRefGoogle Scholar
  3. Alló, M., M.L. Loureiro, and E. Iglesias. 2015. Farmers’ preferences and social capital regarding agri-environmental schemes to protect birds. Journal of Agricultural Economics 66: 672–689.CrossRefGoogle Scholar
  4. Aslam, U., M. Termansen, and L. Fleskens. 2017. Investigating farmers’ preferences for alternative PES schemes for carbon sequestration in UK agroecosystems. Ecosystem Services 27: 103–112.  https://doi.org/10.1016/j.ecoser.2017.08.004.CrossRefGoogle Scholar
  5. Beharry-Borg, N., J.R.C. Smart, M. Termansen, and K. Hubacek. 2013. Evaluating farmers’ likely participation in a payment programme for water quality protection in the UK uplands. Regional Environmental Change 13: 633–647.CrossRefGoogle Scholar
  6. Broch, S.W., N. Strange, J.B. Jacobsen, and K.A. Wilson. 2013. Farmers’ willingness to provide ecosystem services and effects of their spatial distribution. Ecological Economics 92: 78–86.CrossRefGoogle Scholar
  7. Choi, B.C.K., and A.W.P. Pak. 2005. A catalog of biases in questionnaires. Preventing Chronic Disease 2: 1–20.Google Scholar
  8. Christensen, T., A.B. Pedersen, H.Ø. Nielsen, and B. Hasler. 2011. Determinants of farmers’ willingness to participate in subsidy schemes for pesticide-free buffer zones. Ecological Economics 70: 1558–1564.CrossRefGoogle Scholar
  9. Doeser, B. 2018. WFD and agriculture Assessment of Member States ‘2nd River Basin Management Plans. Update from the European Commission. Presentation at European Commission workshop on Water and Agriculture—Addressing Diffuse Water Pollution through the post-2020 CAP in Soroe, Denmark, November 2018.Google Scholar
  10. ECA. 2011. Is agri-environment support well designed and managed? Special Report No. 7. The European Court of Auditors, European Union.Google Scholar
  11. ECA. 2017. Greening, a complex income support scheme, not yet environmentally effective. Special Report No. 21. The European Court of Auditors, European Union.Google Scholar
  12. Eriksen, J., P.N. Jensen, B.H. Jacobsen, I.K. Thomsen, K. Schelde, G. Blicher-Mathiesen, B. Kronvang, E.M. Hansen, et al. 2014. Virkemidler til realisering af 2. generations vandplaner og målrettet arealregulering, vol. 052, DCA—Nationalt Center for Fødevarer og Jordbrug, DCA—Blichers Allé 20, 8830 Tjele. DCA Rapport, vol. 052.Google Scholar
  13. Espinosa-Goded, M., J. Barreiro-Hurlé, and E. Ruto. 2010. What do farmers want from agri-environmental scheme design? A choice Experiment approach. Journal of Agricultural Economics 61: 259–273.CrossRefGoogle Scholar
  14. European Commission, Agriculture and Rural Development. 2019. The post-2020 common agricultural policy: environmental benefits and simplification. DG Agriculture and Rural Development. European Union. https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/future-cap.
  15. Franzén, F., P. Dinnétz, and M. Hammer. 2016. Factors affecting farmers’ willingness to participate in eutrophication mitigation—A case study of preferences for wetland creation in Sweden. Ecological Economics 130: 8–15.  https://doi.org/10.1016/j.landusepol.2015.02.007.CrossRefGoogle Scholar
  16. Gómez-Limón, J.A., C. Gutiérrez-Martín, and A.J. Villanueva. 2018. Optimal design of agri-environmental schemes under asymmetric information for improving farmland biodiversity. Journal of Agricultural Economics 70: 153–177.  https://doi.org/10.1111/1477-9552.12279.CrossRefGoogle Scholar
  17. Hanley, N., and M. Czajkowski. 2017. Stated preference valuation methods: An evolving tool for understanding choices and informing policy. Department of Economics Working Paper 1(230), University of Warsaw.Google Scholar
  18. HELCOM. 2013. Summary report on the development of revised Maximum Allowable Inputs (MAI) and updated Country Allocated Reduction Targets (CART) of the Baltic Sea Action Plan. Helsinki: Baltic Marine Environment Protection Commission, HELCOM.Google Scholar
  19. HELCOM. 2018: Sources and pathways of nutrients to the Baltic Sea. HELCOM PLC-6. Baltic Sea Environmental Proceedings No. 153. Helsinki Commission, Helsinki.Google Scholar
  20. Jaeck, M., and R. Lifran. 2014. Farmers’ preferences for production practices: A choice experiment study in the Rhone River Delta. Journal of Agricultural Economics 65: 112–130.CrossRefGoogle Scholar
  21. Kuhfuss, L., R. Préget, S. Thoyer, and N. Hanley. 2016. Nudging farmers to enrol land into agri-environmental schemes: The role of a collective bonus’. European Review of Agricultural Economics 43: 609–636.CrossRefGoogle Scholar
  22. Menegaki, A.N., S.B. Olsen, and K.P. Tsagarakis. 2016. Towards a common standard - a reporting checklist for web-based stated preference valuation surveys and a critique for mode surveys. Journal of Choice Modelling 18: 18–50.  https://doi.org/10.1016/j.jocm.2016.04.005. CrossRefGoogle Scholar
  23. Mettepenningen, E., V. Vandermeulen, K. Delaet, G. Van Huylenbroeck, and E.J. Wailes. 2013. Investigating the influence of the institutional organisation of agri-environmental schemes on scheme adoption. Land Use Policy 33: 20–30.CrossRefGoogle Scholar
  24. Nainggolan, D., B. Hasler, H.E. Andersen, S. Gyldenkærne, and M. Termansen. 2018. Water quality management and climate change mitigation: Cost-effectiveness of joint implementation in the Baltic Sea region. Ecological Economics 144: 12–26.  https://doi.org/10.1016/j.ecolecon.2017.07.026.CrossRefGoogle Scholar
  25. Olesen, J.E., U. Jørgensen, J.E. Hermansen, S.O. Petersen, J. Eriksen, K. Søegaard, F.P. Vinther, L. Elsgaard, et al. 2013. Effekter af tiltag til reduktion af landbrugets udledninger af drivhusgasser DCA rapport Nr. 027.Google Scholar
  26. Pfeffermann, Daniel. 1996. The use of sampling weights for survey data analysis. Statistical Methods in Medical Research 5: 239–261.CrossRefGoogle Scholar
  27. Poinello, M. 2018. Common Agricultural Policy post 2020—Water relevant aspects. Presentation at European Commission workshop on Water and Agriculture—Addressing diffuse water pollution through the post-2020 CAP in Soroe, Denmark, November 2018.Google Scholar
  28. Reusch, T.B.H., J. Dierking, H.C. Andersson, E. Bonsdorff, J. Carstensen, M. Casini, M. Czajkowski, B. Hasler, et al. 2018. The Baltic Sea as a time machine for the future coastal ocean. Science Advances.  https://doi.org/10.1126/sciadv.aar8195.CrossRefGoogle Scholar
  29. Ruto, E., and G. Garrod. 2009. Investigating farmers’ preferences for the design of agri-environmental schemes: A choice experiment approach. Journal of Environmental Planning and Management 52: 631–647.CrossRefGoogle Scholar
  30. Salomon, E., and M. Sundberg. 2012. Implementation and status of priority measures to reduce nitrogen and phosphorus leakage. Summary of Country Reports. Baltic Compass, Work Package 3. Available January 24, 2017, from http://www.balticcompass.org/_blog/Project_Reports/post/Prioritized_measures_by_Work_Package_3_/.
  31. Scarpa, R., and J.M. Rose. 2008. Design efficiency for non-market valuation with choice modelling: How to measure it, what to report and why. Australian Journal of Agricultural and Resource Economics 52: 253–282.CrossRefGoogle Scholar
  32. Schulz, N., G. Breustedt, and U. Latacz-Lohmann. 2014. Assessing farmers’ willingness to accept “greening”: Insights from a discrete choice experiment in Germany. Journal of Agricultural Economics 65: 26–48.CrossRefGoogle Scholar
  33. Science for Environment Policy. 2017: Agri-environmental schemes: how to enhance the agriculture-environment relationship. Thematic Issue 57. Issue produced for the European Commission DG Environment by the Science Communication Unit, UWE, Bristol. Available from http://ec.europa.eu/science-environment-policy.
  34. Villenueva, A.J., M. Rodríguez-Entrena, M. Arriaza, and J.A. Gómez-Limón. 2017. Heterogeneity of farmers’ preferences towards agri-environmental schemes across different agricultural subsystems. Journal of Environmental Planning and Management 60: 684–707.  https://doi.org/10.1080/09640568.2016.1168289.CrossRefGoogle Scholar
  35. Zimmerman, A., and W. Britz. 2016. European farms’ participation in agri-environmental measures. Land Use Policy 50: 214–228.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2019

Authors and Affiliations

  • Berit Hasler
    • 1
    Email author
  • Mikolaj Czajkowski
    • 2
  • Katarina Elofsson
    • 3
  • Line Block Hansen
    • 7
  • Maria Theresia Konrad
    • 1
  • Helle Ørsted Nielsen
    • 1
  • Olli Niskanen
    • 4
  • Tea Nõmmann
    • 5
  • Anders Branth Pedersen
    • 1
  • Kaja Peterson
    • 5
  • Helen Poltimäe
    • 5
  • Tobias Häggmark Svensson
    • 6
  • Katarzyna Zagórska
    • 2
  1. 1.Department of Environmental ScienceAarhus UniversityRoskildeDenmark
  2. 2.Faculty of Economic SciencesUniversity of WarsawWarsawPoland
  3. 3.Department of EconomicsSwedish University of Agricultural SciencesUppsalaSweden
  4. 4.Natural Resources Institute Finland (Luke)HelsinkiFinland
  5. 5.Stockholm Environment Institute Tallinn CentreTallinnEstonia
  6. 6.Ulls husUltunaSweden
  7. 7.Danish Economic CouncilsHorsensDenmark

Personalised recommendations