Skip to main content

Advertisement

Log in

Trophic Rewilding Advancement in Anthropogenically Impacted Landscapes (TRAAIL): A framework to link conventional conservation management and rewilding

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

A variety of rewilding initiatives are being implemented across Europe, generally characterized by a more functionalist approach to nature management compared to the classic compositional approach. To address the increasing need for a framework to support implementation of rewilding in practical management, we present TRAAIL—Trophic Rewilding Advancement in Anthropogenically Impacted Landscapes. TRAAIL has been co-produced with managers and other stakeholders and provides managers with a framework to categorize rewilding initiatives and to link conventional nature management and rewilding by guiding steps towards a higher degree of self-regulation. Applying TRAAIL to data obtained in a Danish survey of rewilding-inspired initiatives we find that out of 44 initiatives there is no “Full rewilding” initiatives, 3 “Near-full rewilding” initiatives, 23 “Partial rewilding” initiatives, 2 “minimal rewilding” initiatives and 16 “Effort-intensive conservation management” initiatives. This study shows how TRAAIL can guide and inform trophic rewilding on a local and national scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aaris-Sørensen, K. 2009. Diversity and dynamics of the mammalian fauna in Denmark throughout the last glacial–interglacial cycle, 115-0 kyr BP. In Fossils and strata, ed. G.M. Svend Stouge. Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Bakker, E.S., J.L. Gill, C.N. Johnson, F.W. Vera, C.J. Sandom, G.P. Asner, and J.C. Svenning. 2016. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences of the Unites States of America 113: 847–855. https://doi.org/10.1073/pnas.1502545112.

    Article  CAS  Google Scholar 

  • Barkham, P. 2018. The magical wilderness farm: raising cows among the weeds at Knepp. https://www.theguardian.com/environment/2018/jun/15/the-magical-wilderness-farm-raising-cows-among-the-weeds-at-knepp. Accessed 30 March 2019.

  • Barnosky, A.D., N. Matzke, S. Tomiya, G.O.U. Wogan, B. Swartz, T.B. Quental, C. Marshall, J.L. McGuire, et al. 2011. Has the Earth’s sixth mass extinction already arrived? Nature 471: 51–57.

    Article  CAS  Google Scholar 

  • Barras, C. 2016. The Chernobyl exclusion zone is arguably a nature reserve. http://www.bbc.com/earth/story/20160421-the-chernobyl-exclusion-zone-is-arguably-a-nature-reserve. Accessed 30 March 2019.

  • Bern Convention. 1979. Convention on the Conservation of European Wildlife and Natural Habitats. Bern.

  • Berthelsen, J.P., and M. Nitschke. 2015. Overvågning af Castor fiber i Vestjylland 2011–2014. Nationalt center for miljø og energi (in Danish).

  • Braczkowski, A.R., C.J. O’Bryan, M.J. Stringer, J.E.M. Watson, H.P. Possingham, and H.L. Beyer. 2018. Leopards provide public health benefits in Mumbai, India. Frontiers in Ecology and the Environment 16: 176–182. https://doi.org/10.1002/fee.1776.

    Article  Google Scholar 

  • Brunbjerg, A.K., H.H. Bruun, J.E. Moeslund, J.P. Sadler, J.C. Svenning, and R. Ejrnæs. 2018. Ecospace: A unified framework for understanding variation in terrestrial biodiversity. Basic and Applied Ecology 18: 86–94. https://doi.org/10.1016/j.baae.2016.09.002.

    Article  Google Scholar 

  • CBD. 2010. Revised and updated strategic plan: Technical rationale and suggested milestones and indicators. Nagoya: CBD.

    Google Scholar 

  • Cromsigt, J.P.G.M., Y.J.M. Kemp, E. Rodriguez, and H. Kivit. 2017. Rewilding Europe’s large grazer community: How functionally diverse are the diets of European bison, cattle, and horses? Restoration Ecology. https://doi.org/10.1111/rec.12661.

    Article  Google Scholar 

  • Dirzo, R., H.S. Young, M. Galetti, G. Ceballos, N.J. Isaac, and B. Collen. 2014. Defaunation in the Anthropocene. Science 345: 401–406. https://doi.org/10.1126/science.1251817.

    Article  CAS  Google Scholar 

  • Doughty, C.E., J. Roman, S. Faurby, A. Wolf, A. Haque, E.S. Bakker, Y. Malhi, J.B. Dunning Jr., et al. 2016. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences of the Unites States of America 113: 868–873. https://doi.org/10.1073/pnas.1502549112.

    Article  CAS  Google Scholar 

  • ESRI. 2018. ArcGIS. Redland: ESRI.

    Google Scholar 

  • Estes, J.A., J. Terborgh, J.S. Brashares, M.E. Power, J. Berger, W.J. Bond, S.R. Carpenter, T.E. Essington, et al. 2011. Trophic downgrading of planet Earth. Science 333: 301–306. https://doi.org/10.1126/science.1205106.

    Article  CAS  Google Scholar 

  • Estes, J.A., M.T. Tinker, T.M. Williams, and D.F. Doak. 1998. Killer whale predation on sea otters linking oceanic and nearshore ecosystems. Science 282: 473–476.

    Article  CAS  Google Scholar 

  • European Commission. 1992a. Council Directive 79/409/EEC on the Conservation of Wild Birds.

  • European Commission. 1992b. Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora.

  • European Commission. 2011. The EU Biodiversity Strategy to 2020. Luxembourg: European Commission.

    Google Scholar 

  • European Commission. 2013. Guidelines on wilderness in Natura 2000. Management of terrestrial wildernesses and wild areas within the Natura 2000 Network. Technical report 2013-069.

  • Fernández, N., L.M. Navarro, and H.M. Pereira. 2017. Rewilding: A call for boosting ecological complexity in conservation. Conservation Letters. https://doi.org/10.1111/conl.12374.

    Article  Google Scholar 

  • Galetti, M., M. Moleon, P. Jordano, M.M. Pires, P.R. Guimaraes Jr., T. Pape, E. Nichols, D. Hansen, et al. 2018. Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews 93: 845–862. https://doi.org/10.1111/brv.12374.

    Article  Google Scholar 

  • Gillson, L., R.J. Ladle, and M.B. Araujo. 2011. Baselines, patterns and process. In Conservation biogeography, eds. R.J. Ladle and R.J. Whittaker. Blackwell Publisher. https://doi.org/10.1002/9781444390001.

    Google Scholar 

  • Griffiths, C.J., D.M. Hansen, C.G. Jones, N. Zuël, and S. Harris. 2011. Resurrecting extinct interactions with extant substitutes. Current Biology 21: 762–765. https://doi.org/10.1016/j.cub.2011.03.042.

    Article  CAS  Google Scholar 

  • Halada, L., D. Evans, C. Romão, and J.-E. Petersen. 2011. Which habitats of European importance depend on agricultural practices? Biodiversity and Conservation 20: 2365–2378. https://doi.org/10.1007/s10531-011-9989-z.

    Article  Google Scholar 

  • Hermoso, V., M. Clavero, D. Villero, and L. Brotons. 2017. EU’s conservation efforts need more strategic investment to meet continental commitments. Conservation Letters 10: 231–237. https://doi.org/10.1111/conl.12248.

    Article  Google Scholar 

  • Hodder, K.H., J.M. Bullock, P.C. Buckland, and K.J. Kirby. 2005. Large herbivores in the wildwood and modern naturalistic grazing systems. Peterborough: English Nature.

    Google Scholar 

  • Hughes, F.M.R., W.M. Adams, and P.A. Stroh. 2012. When is open-endedness desirable in restoration projects? Restoration Ecology 20: 291–295. https://doi.org/10.1111/j.1526-100x.2012.00874.x.

    Article  Google Scholar 

  • Hughes, A.O., C.C. Tanner, L.A. McKergow, and J.P.S. Sukias. 2016. Unrestricted dairy cattle grazing of a pastoral headwater wetland and its effect on water quality. Agricultural Water Management 165: 72–81. https://doi.org/10.1016/j.agwat.2015.11.015.

    Article  Google Scholar 

  • Janzen, D.H. 1984. Dispersal of small seeds by big herbivores—Foliage is the fruit. American Naturalist 123: 338–353. https://doi.org/10.1086/284208.

    Article  Google Scholar 

  • Jepson, P. 2018. Rewilding’s next generation will mean no more reserves full of starving animals. http://theconversation.com/rewildings-next-generation-will-mean-no-more-reserves-full-of-starving-animals-96140. Accessed 30 March 2019.

  • Jepson, P., and F. Schepers. 2016. Making space for rewilding: Creating an enabling policy environment. Nijmegen: Rewilding Europe.

    Google Scholar 

  • Jepson, P., F. Schepers, and W. Helmer. 2018. Governing with nature: A European perspective on putting rewilding principles into practice. Philosophical Transactions of Royal Society B Biological Sciences. https://doi.org/10.1098/rstb.2017.0434.

    Article  Google Scholar 

  • Jørgensen, D. 2015. Rethinking rewilding. Geoforum 65: 482–488. https://doi.org/10.1016/j.geoforum.2014.11.016.

    Article  Google Scholar 

  • Kowalczyk, R., P. Taberlet, E. Coissac, A. Valentini, C. Miquel, T. Kamiński, and J.M. Wójcik. 2011. Influence of management practices on large herbivore diet—Case of European bison in Białowieża Primeval Forest (Poland). Forest Ecology and Management 261: 821–828. https://doi.org/10.1016/j.foreco.2010.11.026.

    Article  Google Scholar 

  • Mannstedt, T. 2015. Biotopplege mit pferden. Auswirkungen einer ganzjährigen Beweidung mit Exmoor-Ponys (Equus ferus f. caballus) auf halboffene Weidelandschaften am Beispiel Süd-Langeland. Master Thesis. Georg-August University School of Science (GAUSS), Göttingen (in German, English summary).

  • Ministry for Economic Affairs and the Interior. 2014. Kommunale nøgletal. Ministry for Economic Affairs and the Interior. www.noegletal.dk. Accessed 26 Jan 2017.

  • Noss, R.F. 1990. Indicators of biodiversity. Conservation Biology 4: 355–362.

    Article  Google Scholar 

  • Owen-Smith, N. 1987. Pleistocene extinctions: The pivotal role of megaherbivores. Paleobiology 13: 351–362.

    Article  Google Scholar 

  • Perino, A., H.M. Pereira, L.M. Navarro, N. Fernández, J.M. Bullock, S. Ceaușu, A. Cortés-Avizanda, R. Van Klink, et al. 2019. Rewilding complex ecosystems. Science 364: eaav5570. https://doi.org/10.1126/science.aav5570.

    Article  CAS  Google Scholar 

  • Pettorelli, N., J. Barlow, P.A. Stephens, S.M. Durant, B. Connor, H.S.T. Buhne, C.J. Sandom, J. Wentworth, et al. 2018. Making rewilding fit for policy. Journal of Applied Ecology 55: 1114–1125. https://doi.org/10.1111/1365-2664.13082.

    Article  Google Scholar 

  • Prior, J., and K.J. Ward. 2016. Rethinking rewilding: A response to Jørgensen. Geoforum 69: 132–135. https://doi.org/10.1016/j.geoforum.2015.12.003.

    Article  Google Scholar 

  • R Core Team. 2018. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rewilding Europe. 2016. Annual review 2015. Nijmegen: Rewilding Europe.

    Google Scholar 

  • Ripple, W.J., T.M. Newsome, C. Wolf, R. Dirzo, K.T. Everatt, M. Galetti, M.W. Hayward, G.I. Kerley, et al. 2015. Collapse of the world’s largest herbivores. Science Advances 1: e1400103. https://doi.org/10.1126/sciadv.1400103.

    Article  Google Scholar 

  • Rosell, F., O. Bozsér, P. Collen, and H. Parker. 2005. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal Review 35: 248–276.

    Article  Google Scholar 

  • Schweiger, A.H., I. Boulangeat, T. Conradi, M. Davis, and J.C. Svenning. 2018. The importance of ecological memory for trophic rewilding as an ecosystem restoration approach. Biological Reviews. https://doi.org/10.1111/brv.12432.

    Article  Google Scholar 

  • Sinclair, A.R. 2003. Mammal population regulation, keystone processes and ecosystem dynamics. Philosophical Transactions of the Royal Society B Biological Sciences 358: 1729–1740. https://doi.org/10.1098/rstb.2003.1359.

    Article  CAS  Google Scholar 

  • Smith, F.A., R.E.E. Smith, S.K. Lyons, and J.L. Payne. 2018. Body size downgrading of mammals over the Late Quaternary. Science 360: 310–313.

    Article  CAS  Google Scholar 

  • Svenning, J.C., M. Munk, and A. Schweiger. 2019. Trophic rewilding: Ecological restoration of top-down trophic interactions to promotes self-regulating biodiverse ecosystems. In Rewilding, ed. N. Pettorelli, S. Durant, and J. Du Toit. Cambridge: Cambridge University Press.

    Google Scholar 

  • Svenning, J.C., P.B.M. Pedersen, C.J. Donlan, R. Ejrnaes, S. Faurby, M. Galetti, D.M. Hansen, B. Sandel, et al. 2016. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proceedings of the National Academy of Sciences in the United States of America 113: 898–906. https://doi.org/10.1073/pnas.1502556112.

    Article  CAS  Google Scholar 

  • Tälle, M., B. Deak, P. Poschlod, O. Valko, L. Westerberg, and P. Milberg. 2016. Grazing vs. mowing: A meta-analysis of biodiversity benefits for grassland management. Agriculture, Ecosystems and Environment 222: 200–212. https://doi.org/10.1016/j.agee.2016.02.008.

    Article  Google Scholar 

  • Terborgh, J., J.A. Estes, P. Paquer, K. Ralls, D. Boyd, B. Miller, and R. Noss. 1999. The role of top carnivores in regulating terrestrial ecosystems. Washington, DC: Island Press.

    Google Scholar 

  • Torres, A., N. Fernandez, S. Zu Ermgassen, W. Helmer, E. Revilla, D. Saavedra, A. Perino, A. Mimet, et al. 2018. Measuring rewilding progress. Philosophical Transactions of the Royal Society B Biological Sciences. https://doi.org/10.1098/rstb.2017.0433.

    Article  Google Scholar 

  • UNEP. 1992. Convention on Biological Diversity. United Nation Environment Programme.

  • Vera, F.W.M. 2000. Grazing ecology and forest history. Oxon: CABI Publisher.

    Book  Google Scholar 

  • Vera, F. 2009. Large-scale nature development—The Oostvaardersplassen. British Wildlife 20: 28–36.

    Google Scholar 

  • Vermeulen, R. 2015. Natural grazing—Practices of rewilding of cattle and horses. Free Nature.

Download references

Acknowledgements

This work was supported by Aarhus University (PBMP) and the Aage V. Jensen Foundations (PBMP, RE). We also consider this study a contribution to JCS’s Carlsberg Foundation Semper Arden project MegaPast2Future (grant CF16-0005), to the Danish National Research Foundation Niels Bohr professorship project Aarhus University Research on the Anthropocene (AURA), and to JCS’ VILLUM Investigator project (VILLUM FONDEN, grant 16549). The authors would like to thank an editor and two reviewers for their valuable comments and suggestions to improve this work. For feedback on the TRAAIL model the authors would like to thank the members of EnviNa (Environment and Nature), The Nature Agency (Naturstyrelsen), and participants at the workshop “Visual Communication Clinic” at University of Cambridge (organized by University of Cambridge Conservation Research Institute (UCCRI) and Cambridge Centre for Environment, Energy and Natural Resource Governance (C-EENRG)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pil Birkefeldt Møller Pedersen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedersen, P.B.M., Ejrnæs, R., Sandel, B. et al. Trophic Rewilding Advancement in Anthropogenically Impacted Landscapes (TRAAIL): A framework to link conventional conservation management and rewilding. Ambio 49, 231–244 (2020). https://doi.org/10.1007/s13280-019-01192-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-019-01192-z

Keywords

Navigation