pp 1–13 | Cite as

Circumpolar status of Arctic ptarmigan: Population dynamics and trends

  • Eva FugleiEmail author
  • John-André Henden
  • Chris T. Callahan
  • Olivier Gilg
  • Jannik Hansen
  • Rolf A. Ims
  • Arkady P. Isaev
  • Johannes Lang
  • Carol L. McIntyre
  • Richard A. Merizon
  • Oleg Y. Mineev
  • Yuri N. Mineev
  • Dave Mossop
  • Olafur K. Nielsen
  • Erlend B. Nilsen
  • Åshild Ønvik Pedersen
  • Niels Martin Schmidt
  • Benoît Sittler
  • Maria Hørnell Willebrand
  • Kathy Martin
Terrestrial Biodiversity in a Rapidly Changing Arctic


Rock ptarmigan (Lagopus muta) and willow ptarmigan (L. lagopus) are Arctic birds with a circumpolar distribution but there is limited knowledge about their status and trends across their circumpolar distribution. Here, we compiled information from 90 ptarmigan study sites from 7 Arctic countries, where almost half of the sites are still monitored. Rock ptarmigan showed an overall negative trend on Iceland and Greenland, while Svalbard and Newfoundland had positive trends, and no significant trends in Alaska. For willow ptarmigan, there was a negative trend in mid-Sweden and eastern Russia, while northern Fennoscandia, North America and Newfoundland had no significant trends. Both species displayed some periods with population cycles (short 3–6 years and long 9–12 years), but cyclicity changed through time for both species. We propose that simple, cost-efficient systematic surveys that capture the main feature of ptarmigan population dynamics can form the basis for citizen science efforts in order to fill knowledge gaps for the many regions that lack systematic ptarmigan monitoring programs.


Arctic Climate change Ecosystems Lagopus spp. Population cycles Transient dynamics 



We thank multiple field workers that participated in the ptarmigan data collections, researchers that gave information on study sites not included in the present analysis, specifically K. Christie, C. Braun, S. Ebbert, I. Pokrovsky, D. Ehrich, A. Sokolov, N. Sokolov, the Greenland Ecosystem Monitoring Program for access to ecosystem data from Zackenberg, and Oddveig Ø. Ørvoll, Norwegian Polar Institute for graphical design of maps.

Supplementary material

13280_2019_1191_MOESM1_ESM.xlsx (36 kb)
Supplementary material 1 (XLSX 36 kb)
13280_2019_1191_MOESM2_ESM.pdf (58 kb)
Supplementary material 2 (PDF 59 kb)


  1. Barraquand, F., S. Louca, K.C. Abbott, C.A. Cobbold, F. Cordoleani, D.L. DeAngelis, B.D. Eldern, J.W. Fox, et al. 2017. Moving forward in circles: Challenges and opportunities in modelling population cycles. Ecology Letters 20: 1074–1092.CrossRefGoogle Scholar
  2. Bjørnstad, O.N., and B.T. Grenfell. 2001. Noisy clockwork: Time series analysis of population fluctuations in animals. Science 29: 638–643.CrossRefGoogle Scholar
  3. Bjørnstad, O.N., R.A. Ims, and X. Lambin. 1999. Spatial population dynamics: Analysing patterns and processes of population synchrony. Trends in Ecology and Evolution 14: 427–432.CrossRefGoogle Scholar
  4. Boonstra, R., H.P. Andreassen, S. Boutin, J. Husek, R.A. Ims, C.J. Krebs, C. Skarpe, and P. Wabakken. 2016. Why do the boreal forest ecosystems of northwestern Europe differ from those of western North America? BioScience 66: 722–734.CrossRefGoogle Scholar
  5. Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers, and L. Thomas. 2001. Introduction to distance sampling. Estimating abundance of biological populations. New York: Oxford University Press, Inc.Google Scholar
  6. Cattadori, I.M., D.T. Haydon, S.J. Thirgood, and P.J. Hudson. 2003. Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos 100: 439–446.CrossRefGoogle Scholar
  7. Christensen, T., J. Payne, M. Doyle, G. Ibarguchi, J. Taylor, N.M. Schmidt, M. Gill, M. Svoboda, et al. 2013. The Arctic Terrestrial Biodiversity Monitoring Plan. CAFF Monitoring Series Report Nr. 7. Akureyri: CAFF International Secretariat.Google Scholar
  8. Cornullier, T., N.G. Yoccoz, V. Bretagnolle, J.E. Brommer, A. Butet, F. Ecke, D.A. Elston, E. Framstad, et al. 2013. Europe-wide dampening of population cycles in keystone herbivores. Science 340: 63–66.CrossRefGoogle Scholar
  9. Elmhagen, B., J. Kindberg, P. Hellstrom, and A. Angerbjorn. 2015. A boreal invasion in response to climate change? Range shifts and community effects in the borderland between forest and tundra. Ambio 44: 39–50.CrossRefGoogle Scholar
  10. Hannon, S.J., P.K. Eason, and K. Martin. 1998. Willow Ptarmigan. In The birds of North America, No. 369, eds. A. Poole, F. Gill, 1–28. Philadelphia: The Academy of Natural Sciences; Washington, DC: The American Ornithologists’ Union.Google Scholar
  11. Hastings, A. 2004. Transients: The key to long-term ecological understanding? Trends in Ecology and Evolution 19: 39–45.CrossRefGoogle Scholar
  12. Henden, J.-A., R.A. Ims, E. Fuglei, and Å.Ø. Pedersen. 2017. Changed Arctic–alpine food web interactions under rapid climate warming: Implication for ptarmigan research. Wildlife Biology. Scholar
  13. Henden, J.-A., R.A. Ims, and N.G. Yoccoz. 2009. Nonstationary spatio-temporal small rodent dynamics: Evidence from long-term Norwegian fox bounty data. Journal of Animal Ecology 78: 636–645.CrossRefGoogle Scholar
  14. Henden, J.-A., R.A. Ims, N.G. Yoccoz, and S.T. Killengreen. 2011. Declining Willow Ptarmigan populations: The role of habitat structure and community dynamics. Basic and Applied Ecology 12: 413–422.CrossRefGoogle Scholar
  15. Hjeljord, O. 2015. Ryper før og nå. Rypejegernes dagsutbytte fra 1872 til 2013. NINA fagrapport 30 (in Norwegian).Google Scholar
  16. Holmstad, P.R., P.J. Hudson, V. Vandvik, and A. Skorping. 2005. Can parasites synchronise the population fluctuations of sympatric tetraonids? Examining some minimum conditions. Oikos 109: 429–434.CrossRefGoogle Scholar
  17. Ims, R.A., and E. Fuglei. 2005. Trophic interaction cycles in tundra ecosystems and the impact of climate change. BioScience 55: 311–322.CrossRefGoogle Scholar
  18. Ims, R.A., J.-A. Henden, and S.T. Killengreen. 2008. Collapsing population cycles. Trends in Ecology and Evolution 23: 79–86.CrossRefGoogle Scholar
  19. Ims, R.A., and N.G. Yoccoz. 2017. Ecosystem-based monitoring in the age of rapid climate change and new technologies. Current Opinions in Sustainability Science 29: 170–176.CrossRefGoogle Scholar
  20. Ims, R.A., N.G. Yoccoz, K.A. Bråthen, P. Fauchald, T. Tveraa, and V. Hausner. 2007. Can reindeer overabundance cause a trophic cascade? Ecosystems 10: 607–622.CrossRefGoogle Scholar
  21. International Union for Conservation of Nature, IUCN. 2016. The IUCN Red List of Threatened Species. Version 2016.3.1.Google Scholar
  22. Kausrud, K.L., A. Mysterud, H. Steen, J.O. Vik, E. Østbye, B. Cazelles, E. Framstad, A.M. Eikeset, et al. 2008. Linking climate change to lemming cycles. Nature 456: 93–98.CrossRefGoogle Scholar
  23. Krebs, C.J., R. Boonstra, S. Boutin, A.R.E. Sinclair, J.N.M. Smith, B.S. Gilbert, K. Martin, M. O’Donoghue, et al. 2014. Trophic dynamics of the boreal forests of the Kluane Region. Arctic (Supplement) 67: 71–81.CrossRefGoogle Scholar
  24. Lehikoinen, A., M. Green, M. Husby, J.A. Kålås, and Å. Lindström. 2014. Common montane birds are declining in northern Europe. Journal of Avian Biology 45: 3–14.CrossRefGoogle Scholar
  25. Martin, K., C. Doyle, S. Hannon, and F. Mueller. 2001. Forest grouse and ptarmigan. Chapter 11. In Ecosystem dynamics of the boreal forest: The Kluane Project, ed. C.J. Krebs, S. Boutin, and R. Boonstral, 240–260. Oxford: Oxford University Press.Google Scholar
  26. Martin, K., and S. Wilson. 2011. Ptarmigan in North America: Influence of life history and environmental conditions on population persistence. In Gyrfalcons and ptarmigan in a changing world, vol. I, ed. R.T. Watson, T.J. Cade, M. Fuller, G. Hunt, and E. Potapov, 45–54. Boise: The Peregrine Fund.Google Scholar
  27. Møller, A.P., W. Fiedler, and P. Berthold. 2010. Effects of climate change on birds. Oxford: Oxford University Press.Google Scholar
  28. Moss, R., and A. Watson. 2001. Population cycles in birds of the grouse family (Tetraonidae). Advances in Ecological Research 32: 53–111.CrossRefGoogle Scholar
  29. Myrberget, S. 1986. Annual variation in clutch sizes of a population of willow grouse Lagopus lagopus. Fauna norvegica Series C, Cinclus 9: 74–81.Google Scholar
  30. Nielsen, Ó.K. 1999. Gyrfalcon predation on ptarmigan: Numerical and functional responses. Journal of Animal Ecology 68: 1034–1050.CrossRefGoogle Scholar
  31. Nielsen, Ó.K. 2011. Harvest and population change of Rock Ptarmigan in Iceland. Abstract. In Gyrfalcons and ptarmigan in a changing world, vol. II, ed. R.T. Watson, T.J. Cade, M. Fuller, G. Hunt, and E. Potapov, 71. Boise: The Peregrine Fund.Google Scholar
  32. Potapov, R., and R. Sale. 2013. Grouse of the world. London: New Holland Publishers.Google Scholar
  33. Ranta, E., J. Lindstrom, H. Linden, and P. Helle. 2008. How reliable are harvesting data for analyses of spatio-temporal population dynamics? Oikos 117: 1461–1468.CrossRefGoogle Scholar
  34. R Core Team. 2017. R: A Language and Environment for Statistical Computing.
  35. Revermann, R., H. Schmid, N. Zbinden, R. Spaar, and B. Schröder. 2012. Habitat at the mountain tops: How long can Rock Ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach. Journal of Ornithology 153: 891–905.CrossRefGoogle Scholar
  36. Roesch, A., and R. Schmidbauer. 2014. WaveletComp: Computational Wavelet Analysis. Rpackageversion.
  37. Sandercock, B.K., K. Martin, and S.J. Hannon. 2005. Life history strategies in extreme environments: Comparative demography of Arctic and alpine ptarmigan. Ecology 86: 2176–2186.CrossRefGoogle Scholar
  38. Schmidt, N.M., T.R. Christensen, and T. Roslin. 2017. A high Arctic experience of uniting research and monitoring. Earth’s Future 5: 650–654. Scholar
  39. Schmidt, N.M., R.A. Ims, T.T. Høye, O. Gilg, L.H. Hansen, J. Hansen, M. Lund, E. Fuglei, et al. 2012. Response of an Arctic predator guild to collapsing lemming cycles. Proceedings of the Royal Society B 279: 4417–4422.CrossRefGoogle Scholar
  40. Schwarzer, G. 2007. meta: An R package for meta-analysis. R News 7: 40–45.Google Scholar
  41. Scridel, D., M. Brambilla, K. Martin, A. Lehikoinen, A. Iemma, M. Anderle, S. Jahnig, E. Caprio, et al. 2018. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160: 489–515.CrossRefGoogle Scholar
  42. Soininen, E., E. Fuglei, and Å.Ø. Pedersen. 2016. Complementary use of density estimates and hunting statistics: Different sides of the same story? European Journal of Wildlife Research 62: 151–160.CrossRefGoogle Scholar
  43. Steen, J.B., H. Steen, N.C. Stenseth, S. Myrberget, and V. Marcstrom. 1988. Microtine density and weather as predictors of chick production in willow ptarmigan, Lagopus l. lagopus. Oikos 51: 367–373.CrossRefGoogle Scholar
  44. Stenseth, N.C., A. Shabbar, K.S. Chan, S. Boutin, E.K. Rueness, D. Ehrich, J.W. Hurrell, O.C. Lingjaerde, et al. 2004. Snow conditions may create an invisible barrier for lynx. Proceedings of the National Academy of Sciences of USA 101: 10632–10634.CrossRefGoogle Scholar
  45. Storch, I. 2007. Grouse: Status survey and conservation action plan 2006–2010. Gland: IUCN; Fordingbridge: World Pheasant Association.Google Scholar
  46. Tape, K.D., R. Lord, H.-P. Marshall, and R.W. Ruess. 2010. Snow-mediated ptarmigan browsing and shrub expansion in Arctic Alaska. Ecoscience 17: 186–193.CrossRefGoogle Scholar
  47. Willebrand, T., M. Hornell-Willebrand, and L. Asmyr. 2011. Willow grouse bag size is more sensitive to variation in hunter effort than variation in willow grouse density. Oikos 120: 1667–1673.CrossRefGoogle Scholar
  48. Wilson, S., and K. Martin. 2012. Influence of life history strategies on sensitivity, population growth and response to climate for sympatric alpine birds. BMC Ecology 12: 9. Scholar
  49. Wood, S.N. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society, Series B (Statistical Methodology) 73: 3–36.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2019

Authors and Affiliations

  • Eva Fuglei
    • 1
    Email author
  • John-André Henden
    • 2
  • Chris T. Callahan
    • 3
  • Olivier Gilg
    • 4
    • 5
  • Jannik Hansen
    • 6
  • Rolf A. Ims
    • 2
  • Arkady P. Isaev
    • 7
  • Johannes Lang
    • 8
  • Carol L. McIntyre
    • 9
  • Richard A. Merizon
    • 10
  • Oleg Y. Mineev
    • 11
  • Yuri N. Mineev
    • 11
  • Dave Mossop
    • 12
  • Olafur K. Nielsen
    • 13
  • Erlend B. Nilsen
    • 14
  • Åshild Ønvik Pedersen
    • 1
  • Niels Martin Schmidt
    • 15
  • Benoît Sittler
    • 16
  • Maria Hørnell Willebrand
    • 17
  • Kathy Martin
    • 18
  1. 1.Norwegian Polar Institute, Fram CentreTromsøNorway
  2. 2.Dep. of Arctic and Marine BiologyUniversity of Tromsø, The Arctic UniversityTromsøNorway
  3. 3.Government of Newfoundland and LabradorCorner BrookCanada
  4. 4.UMR 6249 Chrono-environnementUniversité de Bourgogne Franche-ComtéBesançonFrance
  5. 5.Groupe de recherche en Ecologie ArctiqueFranchevilleFrance
  6. 6.Section of Ecosystem Ecology, Department of BioscienceAarhus UniversityRoskildeDenmark
  7. 7.IBPC SB RASYakutskRussia
  8. 8.Clinic for Birds, Reptiles, Amphibian and FishJustus-Liebig-University GiessenGiessenGermany
  9. 9.US National Park ServiceFairbanksUSA
  10. 10.Alaska Department of Fish and GamePalmerUSA
  11. 11.Komi RepublicSyktyvkarRussia
  12. 12.Yukon Research CtrYukon CollegeWhitehorseCanada
  13. 13.Icelandic Institute of Natural HistoryGardabærIceland
  14. 14.Norwegian Institute for Nature ResearchTrondheimNorway
  15. 15.Arctic Research Centre, Department of BioscienceAarhus UniversityRoskildeDenmark
  16. 16.Chair for Nature Conservation and Landscape EcologyUniversity of FreiburgFreiburgGermany
  17. 17.Inland Norway University of Applied SciencesElverumNorway
  18. 18.Department of Forest and Conservation SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations