Skip to main content

Advertisement

Log in

Circumpolar terrestrial arthropod monitoring: A review of ongoing activities, opportunities and challenges, with a focus on spiders

  • Terrestrial Biodiversity in a Rapidly Changing Arctic
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

The terrestrial chapter of the Circumpolar Biodiversity Monitoring Programme (CBMP) has the potential to bring international multi-taxon, long-term monitoring together, but detailed fundamental species information for Arctic arthropods lags far behind that for vertebrates and plants. In this paper, we demonstrate this major challenge to the CBMP by focussing on spiders (Order: Araneae) as an example group. We collate available circumpolar data on the distribution of spiders and highlight the current monitoring opportunities and identify the key knowledge gaps to address before monitoring can become efficient. We found spider data to be more complete than data for other taxa, but still variable in quality and availability between Arctic regions, highlighting the need for greater international co-operation for baseline studies and data sharing. There is also a dearth of long-term datasets for spiders and other arthropod groups from which to assess status and trends of biodiversity. Therefore, baseline studies should be conducted at all monitoring stations and we make recommendations for the development of the CBMP in relation to terrestrial arthropods more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldursson, S., and A.I. Ingadóttir (eds.). 2006. Nomination of Surtsey for the UNESCO World Heritage List. Reykjavik: Icelandic Institute of Natural History.

    Google Scholar 

  • Bale, J.S., and S.A.L. Hayward. 2010. Insect overwintering in a changing climate. Journal of Experimental Biology 213: 980–994.

    CAS  Google Scholar 

  • Barrio, I.C., C.G. Bueno, and D.S. Hik. 2016. Warming the tundra: Reciprocal responses of invertebrate herbivores and plants. Oikos 125: 20–28.

    Google Scholar 

  • Böcher, J., N.P. Kristensen, T. Pape, and L. Vilhelmsen (eds.). 2015. The Greenland entomofauna: An identification manual of insects, spiders and their allies. Leiden: Koninklijke Brill nv.

    Google Scholar 

  • Bolduc, E., N. Casajus, P. Legagneux, L. McKinnon, H.G. Gilchrist, M. Leung, R.I.G. Morrison, D. Reid, et al. 2013. Terrestrial arthropod abundance and phenology in the Canadian Arctic: Modelling resource availability for Arctic-nesting insectivorous birds. Canadian Entomologist 145: 155–170.

    Google Scholar 

  • Bowden, J.J., and C.M. Buddle. 2010a. Determinants of ground-dwelling spider assemblages at a regional scale in the Yukon Territory, Canada. Ecoscience 17: 287–297.

    Google Scholar 

  • Bowden, J.J., and C.M. Buddle. 2010b. Spider assemblages across elevational and latitudinal gradients in the Yukon Territory, Canada. Arctic 63: 261–272.

    Google Scholar 

  • Bowden, J.J., and C.M. Buddle. 2012. Life history of tundra-dwelling wolf spiders (Araneae: Lycosidae) from the Yukon Territory, Canada. Canadian Journal of Zoology-Revue Canadienne De Zoologie 90: 714–721.

    Google Scholar 

  • Bowden, J.J., A. Eskildsen, R.R. Hansen, K. Olsen, C.M. Kurle, and T.T. Hoye. 2015. High-Arctic butterflies become smaller with rising temperatures. Biology Letters 11: 20150574. https://doi.org/10.1098/rsbl.2015.0574.

    Article  Google Scholar 

  • Bowden, J.J., O.L.P. Hansen, K. Olsen, N.M. Schmidt, and T.T. Høye. 2018. Drivers of inter-annual variation and long-term change in High-Arctic spider species abundances. Polar Biology 41: 1635–1649. https://doi.org/10.1007/s00300-018-2351-0.

    Article  Google Scholar 

  • Bowser, M.L., J.M. Morton, J.D. Hanson, D.R. Magness, and M. Okuly. 2017. Arthropod and oligochaete assemblages from grasslands of the southern Kenai Peninsula, Alaska. Biodiversity Data Journal 5: e10792.

    Google Scholar 

  • Buddle, C. M., D. C. Currie, and D. Giberson. 2008. Northern insect survey, 63–64. Newsletter of the Biological Survey of Canada (Terrestrial Arthropods).

  • Buddle, C.M., J.R. Spence, and D.W. Langor. 2000. Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography 23: 424–436.

    Google Scholar 

  • Cameron, E.R., and C.M. Buddle. 2017. Seasonal change and microhabitat association of Arctic spider assemblages (Arachnida: Araneae) on Victoria Island (Nunavut, Canada). Canadian Entomologist 149: 357–371.

    Google Scholar 

  • CAVM Team, C. 2003. Circumpolar Arctic vegetation map. Scale 1:7,500,000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage.

  • Christensen, T., J. Payne, M. Doyle, G. Ibarguchi, J. Taylor, N.M. Schmidt, M. Gill, M. Svoboda, et al. 2013. The Arctic terrestrial biodiversity monitoring plan. 7, CAFF International Secretariat. Akureyri, Iceland.

  • Convey, P. 2011. Antarctic terrestrial biodiversity in a changing world. Polar Biology 34: 1629.

    Google Scholar 

  • Convey, P., H. Abbandonato, F. Bergan, L.T. Beumer, E.M. Biersma, V.S. Brathen, L. D’Imperio, C.K. Jensen, et al. 2015. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates. Journal of Thermal Biology 54: 111–117.

    Google Scholar 

  • Convey, P., S.J. Coulson, M.R. Worland, and A. Sjöblom. 2018. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biology 41: 1587–1605.

    Google Scholar 

  • Cooper, E.J. 2014. Warmer shorter winters disrupt Arctic Terrestrial Ecosystems. Annual Review of Ecology Evolution and Systematics 45: 271–295.

    Google Scholar 

  • Coulson, S.I., I.D. Hodkinson, and N.R. Webb. 2003. Microscale distribution patterns in high Arctic soil microarthropod communities: The influence of plant species within the vegetation mosaic. Ecography 26: 801–809.

    Google Scholar 

  • Coulson, S.J., P. Convey, K. Aakra, L. Aarvik, M.L. Avila-Jimenez, A. Babenko, E.M. Biersma, S. Bostrom, et al. 2014. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea, Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biology & Biochemistry 68: 440–470.

    CAS  Google Scholar 

  • Coulson, S.J., I.D. Hodkinson, N.R. Webb, and J.A. Harrison. 2002. Survival of terrestrial soil-dwelling arthropods on and in seawater: Implications for trans-oceanic dispersal. Functional Ecology 16: 353–356.

    Google Scholar 

  • Culler, L.E., M.P. Ayres, and R.A. Virginia. 2015. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster. Proceedings of the Royal Society B-Biological Sciences 282: 20151549. https://doi.org/10.1098/rspb.2015.1549.

    Article  Google Scholar 

  • Dahl, M.T., N.G. Yoccoz, K. Aakra, and S.J. Coulson. 2018. The Araneae of Svalbard: The relationships between specific environmental factors and spider assemblages in the High Arctic. Polar Biology 41: 839–853.

    Google Scholar 

  • Danks, H.V. 1992. Arctic insects as indicators of environmental-change. Arctic 45: 159–166.

    Google Scholar 

  • Eitzinger, B., N. Abrego, D. Gravel, T. Huotari, E.J. Vesterinen, and T. Roslin. 2019. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis—variable environment, stable diet. Molecular Ecology 28: 266–280.

    CAS  Google Scholar 

  • Elias, S.A., S. Kuzmina, and S. Kiselyov. 2006. Late Tertiary origins of the Arctic beetle fauna. Palaeogeography, Palaeoclimatology, Palaeoecology 241: 373–392.

    Google Scholar 

  • Ernst, C.M., S. Loboda, and C.M. Buddle. 2016. Capturing northern biodiversity: Diversity of arctic, subarctic and north boreal beetles and spiders are affected by trap type and habitat. Insect Conservation and Diversity 9: 63–73.

    Google Scholar 

  • Freeman, T.N. 1959. The Canadian Northern Insect Survey, 1947–57. Polar Record 9: 299–307.

    Google Scholar 

  • Gillespie, M.A.K., N. Baggesen, and E.J. Cooper. 2016. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming. Environmental Research Letters 11: 115006. https://doi.org/10.1088/1748-9326/11/11/115006.

    Article  Google Scholar 

  • Gillespie, M.A.K., M. Alfredsson, I.C. Barrio, J.J. Bowden, P. Convey, L.E. Culler, S.J. Coulson, P.H. Krogh, et al. 2019. Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic. Ambio. https://doi.org/10.1007/s13280-019-01162-5.

    Article  Google Scholar 

  • Government of Canada. 2018. The Canadian High Arctic Research Station (CHARS) campus.

  • Hansen, J., E. Topp-Jørgensen, and T.R.E. Christensen. 2017. Zackenberg Ecological Research Operations 21st annual report, 2015. Aarhus University, DCE—Danish Centre for Environment and Energy.

  • Hansen, R.R., O.L.P. Hansen, J.J. Bowden, U.A. Treier, S. Normand, and T.T. Høye. 2016. Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities. PeerJ 4: e2224.

    Google Scholar 

  • Hill, D.E., and D.B. Richman. 2009. The evolution of jumping spiders (Araneae: Salticidae): A review. Peckhamia 75: 1–7.

    Google Scholar 

  • Hobbie, J.E., S.R. Carpenter, N.B. Grimm, J.R. Gosz, and T.R. Seastedt. 2003. The US long term ecological research program. BioScience 53: 21–32.

    Google Scholar 

  • Hodkinson, I.D., A. Babenko, V. Behan-Pelletier, J. Böcher, G. Boxshall, F. Brodo, S.J. Coulson, W.H. De Smet, et al. 2013. Terrestrial and freshwater invertebrates.In Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity, ed. H.E.A. Meltofte. Conservation of Arctic Flora and Fauna, Akureyri.

  • Hodkinson, I.D., and J. Bird. 1998. Host-specific insect herbivores as sensors of climate change in arctic and Alpine environments. Arctic and Alpine Research 30: 78–83.

    Google Scholar 

  • Hodkinson, I.D., and S.J. Coulson. 2004. Are high Arctic terrestrial food chains really that simple? The Bear Island food web revisited. Oikos 106: 427–431.

    Google Scholar 

  • Hodkinson, I.D., and J.K. Jackson. 2005. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management 35: 649–666.

    Google Scholar 

  • Hodkinson, I.D., N.R. Webb, J.S. Bale, W. Block, S.J. Coulson, and A.T. Strathdee. 1998. Global change and Arctic ecosystems: Conclusions and predictions from experiments with terrestrial invertebrates on spitsbergen. Arctic and Alpine Research 30: 306–313.

    Google Scholar 

  • Høye, T.T., J.J. Bowden, O.L.P. Hansen, R.R. Hansen, T.N. Henriksen, A. Niebuhr, and M.G. Skytte. 2018. Elevation modulates how Arctic arthropod communities are structured along local environmental gradients. Polar Biology 41: 1555–1565.

    Google Scholar 

  • Høye, T.T., and L.E. Culler. 2018. Tundra arthropods provide key insights into ecological responses to environmental change. Polar Biology 41: 1523–1529.

    Google Scholar 

  • Høye, T.T., A. Eskildsen, R.R. Hansen, J.J. Bowden, N.M. Schmidt, and W.D. Kissling. 2014. Phenology of high-arctic butterflies and their floral resources: Species-specific responses to climate change. Current Zoology 60: 243–251.

    Google Scholar 

  • Høye, T.T., and M.C. Forchhammer. 2008a. The influence of weather conditions on the activity of High-Arctic arthropods inferred from long-term observations. BMC Ecology 8: 8.

    Google Scholar 

  • Høye, T.T., and M.C. Forchhammer. 2008b. Phenology of high-arctic arthropods: Effects of climate on spatial, seasonal and inter-annual variation. Advances in Ecological Research 40: 299–324.

    Google Scholar 

  • Høye, T.T., J.U. Hammel, T. Fuchs, and S. Toft. 2009. Climate change and sexual size dimorphism in an Arctic spider. Biology Letters 5: 542–544.

    Google Scholar 

  • Ims, RA., J.U. Jepsen, A. Stien, and N.G. Yoccoz, editors. 2013. Science plan for COAT: Climate-ecological observatory for Arctic Tundra Fram Centre by the University of Tromsø, Fram Centre by the University of Tromsø.

  • Ingimarsdóttir, M., J. Ripa, Ó.B. Magnúsdóttir, and K. Hedlund. 2013. Food web assembly in isolated habitats: A study from recently emerged nunataks, Iceland. Basic and Applied Ecology 14: 174–183.

    Google Scholar 

  • INTERACT. 2015. INTERACT Station catalogue—2015. Danish Centre for Environment and Energy. Aarhus: Aarhus University.

    Google Scholar 

  • Ives, A.R., Á. Einarsson, V.A.A. Jansen, and A. Gardarsson. 2008. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn. Nature 452: 84–87.

    CAS  Google Scholar 

  • Jung, M.P., and J.H. Lee. 2012. Bioaccumulation of heavy metals in the wolf spider, Pardosa astrigera L. Koch (Araneae: Lycosidae). Environmental Monitoring and Assessment 184: 1773–1779.

    CAS  Google Scholar 

  • Jóhannsdóttir, S.S., Y. Kolbeinsson, and Þ.L. Þórarinsson. 2014. Rif Field Station report. Húsavík: NE Iceland Nature Centre.

    Google Scholar 

  • Karlsson, D., T. Pape, K.A. Johansson, J. Liljeblad, and F. Ronquist. 2005. The Swedish Malaise trap project, or how many species of Hymenoptera and Diptera are there in Sweden? Entomologisk Tidsskrift 126: 43–53.

    Google Scholar 

  • Koltz, A.M., A. Asmus, L. Gough, Y. Pressler, and J.C. Moore. 2017. The detritus-based microbial-invertebrate food web contributes disproportionately to carbon and nitrogen cycling in the Arctic. Polar Biology 41: 1531–1545.

    Google Scholar 

  • Koltz, A.M., N.M. Schmidt, and T.T. Høye. 2018. Differential arthropod responses to warming are altering the structure of Arctic communities. Royal Society Open Science 5: 171503. https://doi.org/10.1098/rsos.171503.

    Article  Google Scholar 

  • Koponen, S., T. Pajunen, and N.R. Fritzén. 2013: Atlas of the Araneae of Finland. Finnish Expert Group on Araneae. http://biolcoll.utu.fi/arach/aran2013/aranmaps.htm.

  • Kozlov, M.V., M.D. Hunter, S. Koponen, J. Kouki, P. Niemela, and P.W. Price. 2010. Diverse population trajectories among coexisting species of subarctic forest moths. Population Ecology 52: 295–305.

    Google Scholar 

  • Kumschick, S., M.H. Schmidt-Entling, S. Bacher, T. Hickler, W. Entling, and W. Nentwig. 2009. Water limitation prevails over energy in European diversity gradients of sheetweb spiders (Araneae: Linyphiidae). Basic and Applied Ecology 10: 754–762.

    Google Scholar 

  • Lavelle, P., T. Decaëns, M. Aubert, S. Barot, M. Blouin, F. Bureau, P. Margerie, P. Mora, and J.P. Rossi. 2006. Soil invertebrates and ecosystem services. European Journal of Soil Biology 42: S3–S15.

    Google Scholar 

  • Lindenmayer, D.B., and G.E. Likens. 2010. The science and application of ecological monitoring. Biological Conservation 143: 1317–1328.

    Google Scholar 

  • Loboda, S., and C.M. Buddle. 2018. Small to large-scale patterns of ground-dwelling spider (Araneae) diversity across northern Canada. FACETS 3: 880–895.

    Google Scholar 

  • Loboda, S., J. Savage, C.M. Buddle, N.M. Schmidt, and T.T. Hoye. 2018. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41: 265–277.

    Google Scholar 

  • Marusik, Y.M., and K.Y. Eskov. 2009. Spiders (Arachnida: Aranei) of the tundra zone of Russia. In Species and communities in extreme environments, ed. S.I. Golovatch, O.L. Markarova, A.B. Babenko, and L.D. Penev. Pensoft Publishers & KMK Scientific Press, Sofia, Moscow.

  • McDermott, M.T. 2017. Arthropod communities and passerine diet: Effects of shrub expansion in Western Alaska. Thesis (M.S.) University of Alaska Fairbanks, Alaska, US.

  • Metcalfe, D.B., T.D.G. Hermans, J. Ahlstrand, M. Becker, M. Berggren, R.G. Björk, M.P. Björkman, D. Blok, et al. 2018. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology & Evolution 2: 1443–1448.

    Google Scholar 

  • Porter, T.M., and M. Hajibabaei. 2018. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Molecular Ecology 27: 313–338.

    Google Scholar 

  • Rich, M.E., L. Gough, and N.T. Boelman. 2013. Arctic arthropod assemblages in habitats of differing shrub dominance. Ecography 36: 994–1003.

    Google Scholar 

  • Riegert, P. 1999. The Survey of Insects of Northern Canada 1947–1962. Rempeck Publ., SK, Entomological Series No. 8. 49 pp.

  • Rix, M.G., R.J. Raven, A.D. Austin, S.J.B. Cooper, and M.S. Harvey. 2018. Systematics of the spiny trapdoor spider genus Bungulla (Mygalomorphae: Idiopidae): Revealing a remarkable radiation of mygalomorph spiders from the Western Australian arid zone. Journal of Arachnology 46: 249–344.

    Google Scholar 

  • Rohr, J.R., C.G. Mahan, and K.C. Kim. 2007. Developing a monitoring program for invertebrates: Guidelines and a case study. Conservation Biology 21: 422–433.

    Google Scholar 

  • Schmidt, N.M., D.K. Kristensen, A. Michelsen, and C. Bay. 2012. High Arctic plant community responses to a decade of ambient warming. Biodiversity 13: 191–199.

    Google Scholar 

  • Schmidt, N.M., J.B. Mosbacher, B. Eitzinger, E.J. Vesterinen, and T. Roslin. 2018. High resistance towards herbivore-induced habitat change in a high Arctic arthropod community. Biology Letters 14: 20180054.

    Google Scholar 

  • Sikes, D.S., M.L. Draney, and B. Fleshman. 2013. Unexpectedly high among-habitat spider (Araneae) faunal diversity from the Arctic Long-Term Experimental Research (LTER) field station at Toolik Lake, Alaska, United States of America. Canadian Entomologist 145: 219–226.

    Google Scholar 

  • Sikes, D.S., M. Bowser, J.M. Morton, C. Bickford, S. Meierotto, and K. Hildebrandt. 2017. Building a DNA barcode library of Alaska’s non-marine arthropods. Genome 60: 248–259. https://doi.org/10.1139/gen-2015-0203.

    Article  CAS  Google Scholar 

  • Thorpe, A.S., D.T. Barnett, S.C. Elmendorf, E.L.S. Hinckley, D. Hoekman, K.D. Jones, K.E. LeVan, C.L. Meier, et al. 2016. Introduction to the sampling designs of the National Ecological Observatory Network Terrestrial Observation System. Ecosphere 7: e01627.

    Google Scholar 

  • Timms, L.L., A.M.R. Bennett, C.M. Buddle, and T.A. Wheeler. 2013. Assessing five decades of change in a High Arctic parasitoid community. Ecography 36: 1227–1235.

    Google Scholar 

  • Tiusanen, M., P.D.N. Hebert, N.M. Schmidt, and T. Roslin. 2016. One fly to rule them all-muscid flies are the key pollinators in the Arctic. Proceedings of the Royal Society B-Biological Sciences 283: 8. https://doi.org/10.1098/rspb.2016.1271.

    Article  CAS  Google Scholar 

  • Topp-Jørgensen, E., J. Hansen, and T.R.E. Christensen. 2017. Nuuk Ecological Research Operations 9th annual report, 2015. Aarhus University, DCE—Danish Centre for Environment and Energy.

  • Tulp, I., and H. Schekkerman. 2008. Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61: 48–60.

    Google Scholar 

  • Välimäki, P., K. Männistö, and J.-P. Kaitila. 2011. Katsaus Enontekiön uhanalaisiin tunturiperhoslajeihin ja tunturiperhosseurannan esiintymisaluehavaintoihin vuosina 2008–2011. Baptria 36: 70–90.

    Google Scholar 

  • Wirta, H.K., E.J. Vesterinen, P.A. Hambäck, E. Weingartner, C. Rasmussen, J. Reneerkens, N.M. Schmidt, O. Gilg, and T. Roslin. 2015. Exposing the structure of an Arctic food web. Ecology and Evolution 5: 3842–3856.

    Google Scholar 

  • Wyant, K.A., M.L. Draney, and J.C. Moore. 2011. Epigeal spider (Araneae) communities in moist acidic and dry heath tundra at Toolik Lake, Alaska. Arctic, Antarctic, and Alpine Research 43: 301–312.

    Google Scholar 

Download references

Acknowledgements

We thank Jukka Salmela for invaluable work during the initial phases of this study and Chris Buddle for early contributions to the CBMPs Invertebrate Expert Committee. Mikhail Kozlov, Armin Namayandeh, the special issue editor and two anonymous reviewers are also thanked for useful input. Thanks also to Hólmgrímur Helgason for preparation of Figs. 1 and 2. P. Convey is supported by NERC core funding to the BAS ‘Biodiversity, Evolution and Adaptation’ Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. K. Gillespie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 516 kb)

Supplementary material 2 (XLSX 50 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillespie, M.A.K., Alfredsson, M., Barrio, I.C. et al. Circumpolar terrestrial arthropod monitoring: A review of ongoing activities, opportunities and challenges, with a focus on spiders. Ambio 49, 704–717 (2020). https://doi.org/10.1007/s13280-019-01185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-019-01185-y

Keywords

Navigation