pp 1–14 | Cite as

Status and trends of terrestrial arthropod abundance and diversity in the North Atlantic region of the Arctic

  • Mark A. K. GillespieEmail author
  • Matthias Alfredsson
  • Isabel C. Barrio
  • Joseph J. Bowden
  • Peter Convey
  • Lauren E. Culler
  • Stephen J. Coulson
  • Paul Henning Krogh
  • Amanda M. Koltz
  • Seppo Koponen
  • Sarah Loboda
  • Yuri Marusik
  • Jonas P. Sandström
  • Derek S. Sikes
  • Toke T. Høye
Terrestrial Biodiversity in a Rapidly Changing Arctic


The Circumpolar Biodiversity Monitoring Programme (CBMP) provides an opportunity to improve our knowledge of Arctic arthropod diversity, but initial baseline studies are required to summarise the status and trends of planned target groups of species known as Focal Ecosystem Components (FECs). We begin this process by collating available data for a relatively well-studied region in the Arctic, the North Atlantic region, summarising the diversity of key terrestrial arthropod FECs, and compiling trends for some representative species. We found the FEC classification system to be challenging to implement, but identified some key groups to target in the initial phases of the programme. Long-term data are scarce and exhibit high levels of spatial and temporal variability. Nevertheless, we found that a number of species and groups are in decline, mirroring patterns in other regions of the world. We emphasise that terrestrial arthropods require higher priority within future Arctic monitoring programmes.


Blood feeding insects Decomposers Herbivores Invertebrate prey Pollinators Predators 



We thank Jukka Salmela for invaluable work during the initial phases of this study, Erling Ólafsson and The Icelandic Institute of Natural History for the use of the Iceland moth data, Chris Buddle for early contributions to the CBMPs Invertebrate Expert Committee and the guest editor and reviewers for valuable comments on an earlier draft. We also thank Olga Makarova, Anatoly Babenko, Laura Gough and Ashley Asmus for valuable comments. Thanks also to Hólmgrímur Helgason for preparation of Fig. 1. P. Convey is supported by NERC core funding to the BAS ‘Biodiversity, Evolution and Adaptation’ Team.

Supplementary material

13280_2019_1162_MOESM1_ESM.pdf (535 kb)
Supplementary material 1 (PDF 534 kb)
13280_2019_1162_MOESM2_ESM.xlsx (202 kb)
Supplementary material 2 (XLSX 202 kb)


  1. Aastrup, P., J. Nymand, K. Raundrup, M. Olsen, T. L. Lauridsen, P.H. Krogh, N.M. Schmidt, and L. Illeris, et al. 2015. Conceptual design and sampling procedures of the biological programme of NuukBasic., Aarhus University.Google Scholar
  2. Arnalds, A. 1987. Ecosystem disturbance in Iceland. Arctic and Alpine Research 19: 508–513.CrossRefGoogle Scholar
  3. Ávila-Jiménez, M.L., and S.J. Coulson. 2011. A holarctic biogeographical analysis of the Collembola (Arthropoda, Hexapoda) Unravels recent post-glacial colonization patterns. Insects 2: 273.CrossRefGoogle Scholar
  4. Barrio, I.C., C.G. Bueno, and D.S. Hik. 2016. Warming the tundra: Reciprocal responses of invertebrate herbivores and plants. Oikos 125: 20–28.CrossRefGoogle Scholar
  5. Barrio, I.C., E. Lindén, M. Te Beest, J. Olofsson, A. Rocha, E.M. Soininen, J.M. Alatalo, T. Andersson, et al. 2017. Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biology 40: 2265–2278.CrossRefGoogle Scholar
  6. Böcher, J. 1988. The Coleoptera of Greenland—Meddelelser om Grønland. BioScience 26: 100.Google Scholar
  7. Böcher, J., N.P. Kristensen, T. Pape, and L. Vilhelmsen (eds.). 2015. The greenland entomofauna: An identification manual of insects, spiders and their allies. Leiden, The Netherlands: Koninklijke Brill nv.Google Scholar
  8. Bolduc, E., N. Casajus, P. Legagneux, L. McKinnon, H.G. Gilchrist, M. Leung, R.I.G. Morrison, D. Reid, et al. 2013. Terrestrial arthropod abundance and phenology in the Canadian Arctic: modelling resource availability for Arctic-nesting insectivorous birds. Canadian Entomologist 145: 155–170.CrossRefGoogle Scholar
  9. Bowden, J.J., A. Eskildsen, R.R. Hansen, K. Olsen, C.M. Kurle, and T.T. Hoye. 2015a. High-arctic butterflies become smaller with rising temperatures. Biology Letters 11: 20150574.CrossRefGoogle Scholar
  10. Bowden, J.J., O.L.P. Hansen, K. Olsen, N.M. Schmidt, and T.T. Høye. 2018. Drivers of inter-annual variation and long-term change in High-Arctic spider species abundances. Polar Biology 41: 1635–1649.CrossRefGoogle Scholar
  11. Bowden, J.J., R.R. Hansen, K. Olsen, and T.T. Hoye. 2015b. Habitat-specific effects of climate change on a low-mobility Arctic spider species. Polar Biology 38: 559–568.CrossRefGoogle Scholar
  12. Brussaard, L., M.M. Pulleman, É. Ouédraogo, A. Mando, and J. Six. 2007. Soil fauna and soil function in the fabric of the food web. Pedobiologia 50: 447–462.CrossRefGoogle Scholar
  13. Callaghan, T.V., L.O. Bjorn, Y. Chernov, T. Chapin, T.R. Christensen, B. Huntley, R.A. Ims, M. Johansson, et al. 2004. Biodiversity, distributions and adaptations of arctic species in the context of environmental change. Ambio 33: 404–417.CrossRefGoogle Scholar
  14. CAVM Team. 2003. Circumpolar Arctic Vegetation Map. Scale 1:7,500,000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1., U.S. Fish and Wildlife Service, Anchorage.Google Scholar
  15. Christensen, T., J. Payne, M. Doyle, G. Ibarguchi, J. Taylor, N. M. Schmidt, M. Gill, M. Svoboda, M. et al. 2013. The Arctic Terrestrial Biodiversity Monitoring Plan. 7, CAFF International Secretariat. Akureyri, Iceland.Google Scholar
  16. Convey, P., S.J. Coulson, M.R. Worland, and A. Sjöblom. 2018. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biology.Google Scholar
  17. Coulson, S.J., P. Convey, K. Aakra, L. Aarvik, M.L. Avila-Jimenez, A. Babenko, E.M. Biersma, S. Bostrom, et al. 2014. The terrestrial and freshwater invertebrate biodiversity of the archipelagoes of the Barents Sea, Svalbard, Franz Josef Land and Novaya Zemlya. Soil Biology & Biochemistry 68: 440–470.CrossRefGoogle Scholar
  18. Culler, L.E., M.P. Ayres, and R.A. Virginia. 2015. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster. Proceedings of the Royal Society B-Biological Sciences 282: 20151549.CrossRefGoogle Scholar
  19. Danks, H.V. 1981. Arctic Arthropods. A review of systematics and ecology with particular reference to the North American fauna. Entomological Society of Canada, Ottawa.Google Scholar
  20. Danks, H.V. 1992. Arctic insects as indicators of environmental-change. Arctic 45: 159–166.CrossRefGoogle Scholar
  21. Franke, A., V. Lamarre, and E. Hedlin. 2016. Rapid nestling mortality in arctic peregrine falcons due to the biting effects of black flies. Arctic 69: 281–285.CrossRefGoogle Scholar
  22. Gaston, A.J., J.M. Hipfner, and D. Campbell. 2002. Heat and mosquitoes cause breeding failures and adult mortality in an Arctic-nesting seabird. Ibis 144: 185–191.CrossRefGoogle Scholar
  23. Gauld, I.D., and B. Bolton. 1988. The hymenoptera. London: Oxford University Press.Google Scholar
  24. Gillespie, M.A.K., N. Baggesen, and E.J. Cooper. 2016. High Arctic flowering phenology and plant-pollinator interactions in response to delayed snow melt and simulated warming. Environmental Research Letters 11: 115006.CrossRefGoogle Scholar
  25. Govoni, D.P., B.K. Kristjansson, and J.S. Olafsson. 2018. Spring type influences invertebrate communities at cold spring sources. Hydrobiologia 808: 315–325.CrossRefGoogle Scholar
  26. Halldorsson, G., B.D. Sigurdsson, B. Hrafnkelsdottir, E.S. Oddsdottir, O. Eggertsson, and E. Olafsson. 2013. New arthropod herbivores on trees and shrubs in Iceland and changes in pest dynamics: A review. Icelandic Agricultural Sciences 26: 69–84.Google Scholar
  27. Hallmann, C.A., M. Sorg, E. Jongejans, H. Siepel, N. Hofland, H. Schwan, W. Stenmans, A. Müller, et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12: e0185809.CrossRefGoogle Scholar
  28. Hansen, R.R., O.L.P. Hansen, J.J. Bowden, U.A. Treier, S. Normand, and T. Hoye. 2016. Meter scale variation in shrub dominance and soil moisture structure Arctic arthropod communities. Peerj 4: e2224.CrossRefGoogle Scholar
  29. Hodkinson, I.D., A. Babenko, V. Behan-Pelletier, J. Böcher, G. Boxshall, F. Brodo, S.J. Coulson, W.H. De Smet, et al. 2013. Terrestrial and Freshwater H. e. a. Meltofte, editor. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity, Conservation of Arctic Flora and Fauna, Akureyri.Google Scholar
  30. Hodkinson, I.D., and S.J. Coulson. 2004. Are high Arctic terrestrial food chains really that simple? The Bear Island food web revisited. Oikos 106: 427–431.CrossRefGoogle Scholar
  31. Hodkinson, I.D., S.J. Coulson, and N.R. Webb. 2004. Invertebrate community assembly along proglacial chronosequences in the high Arctic. Journal of Animal Ecology 73: 556–568.CrossRefGoogle Scholar
  32. Høye, T.T., and L.E. Culler. 2018. Tundra arthropods provide key insights into ecological responses to environmental change. Polar Biology 41: 1523–1529.CrossRefGoogle Scholar
  33. Høye, T.T., E. Post, H. Meltofte, N.M. Schmidt, and M.C. Forchhammer. 2007. Rapid advancement of spring in the High Arctic. Current Biology 17: 449–451.CrossRefGoogle Scholar
  34. Høye, T.T., and D.S. Sikes. 2013. Arctic entomology in the 21st century. Canadian Entomologist 145: 125–130.CrossRefGoogle Scholar
  35. Jepsen, J.U., L. Kapari, S.B. Hagen, T. Schott, O.P.L. Vindstad, A.C. Nilssen, and R.A. Ims. 2011. Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Global Change Biology 17: 2071–2083.CrossRefGoogle Scholar
  36. Koltz, A.M., A. Asmus, L. Gough, Y. Pressler, and J.C. Moore. 2017. The detritus-based microbial-invertebrate food web contributes disproportionately to carbon and nitrogen cycling in the Arctic. Polar Biology 41: 1531.CrossRefGoogle Scholar
  37. Koltz, A.M., N.M. Schmidt, and T.T. Høye. 2018. Differential arthropod responses to warming are altering the structure of Arctic communities. Royal Society Open Science 5: p171503.CrossRefGoogle Scholar
  38. Lindroth, C.H. 1957. The faunal connections between Europe and North America. New York: John Wiley.CrossRefGoogle Scholar
  39. Lister, B.C., and A. Garcia. 2018. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences 115: E10397–E10406.CrossRefGoogle Scholar
  40. Loboda, S., J. Savage, C.M. Buddle, N.M. Schmidt, and T.T. Hoye. 2018. Declining diversity and abundance of High Arctic fly assemblages over two decades of rapid climate warming. Ecography 41: 265–277.CrossRefGoogle Scholar
  41. Mallory, M.L., M.R. Forbes, and T.D. Galloway. 2006. Ectoparasites of northern fulmars Fulmarus glacialis (Procellariiformes: Procellariidae) from the Canadian Arctic. Polar Biology 29: 353–357.CrossRefGoogle Scholar
  42. Michelsen, V. 2015. Anthomyiidae, Fannidae, Muscidae and Scathophagidae (the Muscidae family group).in J. Böcher, K. Kristensen, T. Pape, and L. Vilhelmsen, editors. The Greenland Entomofauna: An Identification Manual of Insects, Spiders and Their Allies. Koninklijke Brill, Leiden, The Netherlands.Google Scholar
  43. Mortensen, L.O., N.M. Schmidt, T.T. Hoye, C. Damgaard, and M.C. Forchhammer. 2016. Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic High-Arctic ecosystem. Polar Biology 39: 1467–1478.CrossRefGoogle Scholar
  44. Müllerová, J., J. Elsterová, J. Černý, O. Ditrich, J. Žárský, L.E. Culler, H. Kampen, D. Walther, et al. 2018. No indication of arthropod-vectored viruses in mosquitoes (Diptera: Culicidae) collected on Greenland and Svalbard. Polar Biology 41: 1581–1586.CrossRefGoogle Scholar
  45. Ott, D., B.C. Rall, and U. Brose. 2012. Climate change effects on macrofaunal litter decomposition: The interplay of temperature, body masses and stoichiometry. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 3025–3032.CrossRefGoogle Scholar
  46. Porter, T.M., and M. Hajibabaei. 2018. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Molecular Ecology 27: 313–338.CrossRefGoogle Scholar
  47. R Core Team. 2018. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
  48. Reneerkens, J., N.M. Schmidt, O. Gilg, J. Hansen, L.H. Hansen, J. Moreau, and T. Piersma. 2016. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecology and Evolution 6: 7375–7386.CrossRefGoogle Scholar
  49. Roslin, T., H. Wirta, T. Hopkins, B. Hardwick, and G. Varkonyi. 2013. Indirect interactions in the High Arctic. PLoS ONE 8: 67367.CrossRefGoogle Scholar
  50. Schmidt, N.M., B. Hardwick, O. Gilg, T.T. Hoye, P.H. Krogh, H. Meltofte, A. Michelsen, J.B. Mosbacher, et al. 2017. Interaction webs in arctic ecosystems: Determinants of arctic change? Ambio 46: S12–S25.CrossRefGoogle Scholar
  51. Tiusanen, M., P.D.N. Hebert, N.M. Schmidt, and T. Roslin. 2016. One fly to rule them all-muscid flies are the key pollinators in the Arctic. Proceedings of the Royal Society B-Biological Sciences 283: 8.CrossRefGoogle Scholar
  52. Urbanowicz, C., R.A. Virginia, and R.E. Irwin. 2017. The response of pollen-transport networks to landscape-scale climate variation. Polar Biology 40: 2253–2263.CrossRefGoogle Scholar
  53. Wirta, H.K., E.J. Vesterinen, P.A. Hambäck, E. Weingartner, C. Rasmussen, J. Reneerkens, N.M. Schmidt, O. Gilg, et al. 2015. Exposing the structure of an Arctic food web. Ecology and Evolution 5: 3842–3856.CrossRefGoogle Scholar
  54. Witter, L.A., C.J. Johnson, B. Croft, A. Gunn, and M.P. Gillingham. 2012. Behavioural trade-offs in response to external stimuli: Time allocation of an Arctic ungulate during varying intensities of harassment by parasitic flies. Journal of Animal Ecology 81: 284–295.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2019

Authors and Affiliations

  • Mark A. K. Gillespie
    • 1
    Email author
  • Matthias Alfredsson
    • 2
  • Isabel C. Barrio
    • 3
    • 4
  • Joseph J. Bowden
    • 5
    • 6
  • Peter Convey
    • 7
  • Lauren E. Culler
    • 8
    • 9
  • Stephen J. Coulson
    • 10
  • Paul Henning Krogh
    • 5
    • 11
  • Amanda M. Koltz
    • 12
  • Seppo Koponen
    • 13
  • Sarah Loboda
    • 14
  • Yuri Marusik
    • 15
    • 16
  • Jonas P. Sandström
    • 10
  • Derek S. Sikes
    • 17
  • Toke T. Høye
    • 5
    • 18
  1. 1.Department of Environmental SciencesWestern Norway University of Applied SciencesSogndalNorway
  2. 2.The Icelandic Institute of Natural HistoryGardabaerIceland
  3. 3.Department of Natural Resources and Environmental SciencesAgricultural University of IcelandReykjavíkIceland
  4. 4.Department of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
  5. 5.Arctic Research CentreAarhus UniversityAarhus CDenmark
  6. 6.Canadian Forest Service – Atlantic Forestry CentreCorner BrookCanada
  7. 7.British Antarctic Survey, NERCCambridgeUK
  8. 8.Environmental Studies ProgramDartmouth CollegeHanoverUSA
  9. 9.Institute of Arctic StudiesDartmouth CollegeHanoverUSA
  10. 10.Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
  11. 11.Department of BioscienceAarhus UniversitySilkeborgDenmark
  12. 12.Department of BiologyWashington University in St. LouisSt. LouisUSA
  13. 13.Zoological Museum, Biodiversity UnitUniversity of TurkuTurkuFinland
  14. 14.Department of Natural Resource SciencesMcGill UniversitySte-Anne-de-BellevueCanada
  15. 15.Institute for Biological Problems of the North RASMagadanRussia
  16. 16.Department of Zoology & EntomologyUniversity of the Free StateBloemfonteinSouth Africa
  17. 17.University of Alaska Museum, University of Alaska FairbanksFairbanksUSA
  18. 18.Department of BioscienceAarhus UniversityRøndeDenmark

Personalised recommendations