Skip to main content

Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring

Abstract

Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ackerman, D., D. Griffin, S.E. Hobbie, and J.C. Finlay. 2017. Arctic shrub growth trajectories differ across soil moisture levels. Global Change Biology 23: 4294–4302. https://doi.org/10.1111/gcb.13677.

    Article  Google Scholar 

  • Alatalo, J.M., and Ø. Totland. 1997. Response to simulated climatic change in an alpine and sub-Arctic pollen-risk strategist, Silene acaulis. Global Change Biology 3: 74–79. https://doi.org/10.1111/j.1365-2486.1997.gcb133.x.

    Article  Google Scholar 

  • Arft, A.M., M.D. Walker, J.E.A. Gurevitch, J.M. Alatalo, M.S. Bret-Harte, M. Dale, M. Diemer, F. Gugerli, et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491–511. https://doi.org/10.1890/0012-9615(1999)069%5b0491:ROTPTE%5d2.0.CO;2.

    Article  Google Scholar 

  • Barrett, R.T.S., R.D. Hollister, S.F. Oberbauer, and C.E. Tweedie. 2015. Arctic plant responses to changing abiotic factors in northern Alaska. American Journal of Botany 102: 2020–2031. https://doi.org/10.3732/ajb.1400535.

    Article  Google Scholar 

  • Baruah, G., U. Molau, Y. Bai, and J.M. Alatalo. 2017. Community and species-specific responses of plant traits to 23 years of experimental warming across sub-Arctic tundra plant communities. Scientific Reports 7: 2571. https://doi.org/10.1038/s41598-017-02595-2.

    CAS  Article  Google Scholar 

  • Berteaux, D., D. Reale, A.G. McAdam, and S. Boutin. 2004. Keeping pace with fast climate change: Can Arctic life count on evolution? Integrative and Comparative Biology 44: 140–151.

    Article  Google Scholar 

  • Björk, R.G., and U. Molau. 2007. Ecology of alpine snowbeds and the impact of global change. Arctic, Antarctic, and Alpine Research 39: 34–43.

    Article  Google Scholar 

  • Bjorkman, A.D., S.C. Elmendorf, A.L. Beamish, M. Vellend, and G.H.R. Henry. 2015. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biology 21: 4651–4661. https://doi.org/10.1111/gcb.13051.

    Article  Google Scholar 

  • Bjorkman, A.D., I.H. Myers-Smith, S.C. Elmendorf, S. Normand, N. Rüger, P.S.A. Beck, A. Blach-Overgaard, D. Blok, et al. 2018. Plant functional trait change across a warming tundra biome. Nature 562: 57–62. https://doi.org/10.1038/s41586-018-0563-7.

    CAS  Article  Google Scholar 

  • Bjorkman, A.D., M. Vellend, E.R. Frei, and G.H.R. Henry. 2017. Climate adaptation is not enough: Warming does not facilitate success of southern tundra plant populations in the High Arctic. Global Change Biology 23: 1540–1551. https://doi.org/10.1111/gcb.13417.

    Article  Google Scholar 

  • Blok, D., B. Elberling, and A. Michelsen. 2016. Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems 19: 155–169. https://doi.org/10.1007/s10021-015-9924-3.

    CAS  Article  Google Scholar 

  • Blok, D., M.M.P.D. Heijmans, G. Schaepman-Strub, J. van Ruijven, F.J.W. Parmentier, T.C. Maximov, and F. Berendse. 2011. The cooling capacity of mosses: Controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14: 1055–1065. https://doi.org/10.1007/s10021-011-9463-5.

    Article  Google Scholar 

  • Boelman, N.T., L. Gough, J. Wingfield, S. Goetz, A. Asmus, H.E. Chmura, J.S. Krause, J.H. Perez, et al. 2015. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan Arctic tundra. Global Change Biology 21: 1508–1520. https://doi.org/10.1111/gcb.12761.

    Article  Google Scholar 

  • Boulanger-Lapointe, N., E. Lévesque, S. Boudreau, G.H.R. Henry, and N.M. Schmidt. 2014. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. Journal of Biogeography 41: 1967–1978. https://doi.org/10.1111/jbi.12350.

    Article  Google Scholar 

  • Bråthen, K.A., V.T. Ravolainen, A. Stien, T. Tveraa, and R.A. Ims. 2017. Rangifer management controls a climate-sensitive tundra state transition. Ecological Applications 27: 2416–2427. https://doi.org/10.1002/eap.1618.

    Article  Google Scholar 

  • CAFF. 2013. In Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity, ed. H. Meltofte. Akureyri: Conservation of Arctic Flora and Fauna.

    Google Scholar 

  • Callaghan, T.V., L.O. Björn, Y. Chernov, F.S. Chapin III, T.R. Christensen, B. Huntley, R.A. Ims, M. Johansson, et al. 2004. Effects on the function of Arctic ecosystems in the short- and long-term perspectives. Ambio 33: 448–458.

    Article  Google Scholar 

  • Callaghan, T.V., C.E. Tweedie, J. Akerman, C. Andrews, J. Bergstedt, M.G. Butler, T.R. Christensen, D. Cooley, et al. 2011. Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF). Ambio 40: 705–716.

    Article  Google Scholar 

  • Chapin III, F.S., and G.R. Shaver. 1996. Physiological and growth responses of Arctic plants to a field experiment simulating climatic change. Ecology 77: 822–840. https://doi.org/10.2307/2265504.

    Article  Google Scholar 

  • Chapin III, F.S., G.R. Shaver, A.E. Giblin, K.J. Nadelhoffer, and J.A. Laundre. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76: 694–711.

    Article  Google Scholar 

  • Chapin III, F.S., M. Sturm, M.C. Serreze, J.P. McFadden, J.R. Key, A.H. Lloyd, A.D. McGuire, T.S. Rupp, et al. 2005. Role of land-surface changes in Arctic summer warming. Science 310: 657–660. https://doi.org/10.1126/science.1117368.

    CAS  Article  Google Scholar 

  • Christensen, T., J. Payne, M. Doyle, G. Ibarguchi, J. Taylor, N.M. Schmidt, M. Gill, M. Svoboda, et al. 2013. The Arctic Terrestrial Biodiversity Monitoring Plan. CAFF Monitoring Series Report No. 7. Akureyri: CAFF International Secretariat. https://doi.org/10.9752/ts056.10-24-2013.

  • Christiansen, C.T., M.C. Mack, J. DeMarco, and P. Grogan. 2018. Decomposition of senesced leaf litter is faster in tall compared to low birch shrub tundra. Ecosystems 21: 1564–1579. https://doi.org/10.1007/s10021-018-0240-6.

    CAS  Article  Google Scholar 

  • Cleland, E.E., J.M. Allen, T.M. Crimmins, J.A. Dunne, S. Pau, S.E. Travers, E.S. Zavaleta, and E.M. Wolkovich. 2012. Phenological tracking enables positive species responses to climate change. Ecology 93: 1765–1771. https://doi.org/10.1890/11-1912.1.

    Article  Google Scholar 

  • Cooper, E.J., S. Dullinger, and P. Semenchuk. 2011. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Science 180: 157–157. https://doi.org/10.1016/j.plantsci.2010.09.005.

    CAS  Article  Google Scholar 

  • Cornelissen, J.H.C., P.M. van Bodegom, R. Aerts, T.V. Callaghan, R.S.P. van Logtestijn, J.M. Alatalo, F.S. Chapin III, R. Gerdol, et al. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters 10: 619–627. https://doi.org/10.1111/j.1461-0248.2007.01051.x.

    Article  Google Scholar 

  • Crowther, T.W., K.E.O. Todd-Brown, C.W. Rowe, W.R. Wieder, J.C. Carey, M.B. Machmuller, B.L. Snoek, S. Fang, et al. 2016. Quantifying global soil carbon losses in response to warming. Nature 540: 104–108. https://doi.org/10.1038/nature20150.

    CAS  Article  Google Scholar 

  • Daniëls, F.J.A., and J.G. de Molenaar. 2011. Flora and vegetation of Tasiilaq, formerly Angmagssalik, southeast Greenland: A comparison of data between around 1900 and 2007. Ambio 40: 650–659. https://doi.org/10.1007/s13280-011-0171-3.

    Article  Google Scholar 

  • Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, R.G. Björk, A.D. Bjorkman, T.V. Callaghan, L.S. Collier, E.J. Cooper, et al. 2012a. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters 15: 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x.

    Article  Google Scholar 

  • Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, R.G. Björk, N. Boulanger-Lapointe, E.J. Cooper, J.H.C. Cornelissen, T.A. Day, et al. 2012b. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2: 453–457. https://doi.org/10.1038/nclimate1465.

    Article  Google Scholar 

  • Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, A.M. Fosaa, W.A. Gould, L. Hermanutz, A. Hofgaard, I.I. Jónsdóttir, et al. 2015. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of the United States of America 112: 448–452. https://doi.org/10.1073/pnas.1410088112.

    CAS  Article  Google Scholar 

  • Freedman, B., and J. Svoboda. 1994. Alexandra Fiord—An ecological oasis in the polar desert. In Ecology of a Polar Oasis, ed. J. Svoboda and B. Freedman. Toronto: Captus University Publications.

    Google Scholar 

  • Gauthier, G., J. Bêty, M.-C. Cadieux, P. Legagneux, M. Doiron, C. Chevallier, S. Lai, A. Tarroux, et al. 2013. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368: 20120482. https://doi.org/10.1098/rstb.2012.0482.

    Article  Google Scholar 

  • Graglia, E., S. Jonasson, A. Michelsen, and I.K. Schmidt. 1997. Effects of shading, nutrient application and warming on leaf growth and shoot densities of dwarf shrubs in two Arctic–alpine plant communities. Écoscience 4: 191–198. https://doi.org/10.1080/11956860.1997.11682395.

    Article  Google Scholar 

  • Graglia, E., S. Jonasson, A. Michelsen, I.K. Schmidt, M. Havström, and L. Gustavsson. 2001. Effects of environmental perturbations on abundance of sub-Arctic plants after three, seven and ten years of treatments. Ecography 24: 5–12. https://doi.org/10.1034/j.1600-0587.2001.240102.x.

    Article  Google Scholar 

  • Henry, G.H.R., K.A. Harper, W. Chen, J.R. Deslippe, R.F. Grant, P.M. Lafleur, E. Lévesque, S.D. Siciliano, et al. 2012. Effects of observed and experimental climate change on terrestrial ecosystems in northern Canada: Results from the Canadian IPY Program. Climatic Change 115: 207–234. https://doi.org/10.1007/s10584-012-0587-1.

    Article  Google Scholar 

  • Henry, G.H.R., and U. Molau. 1997. Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology 3: 1–9.

    Article  Google Scholar 

  • Hertel, A.G., R. Bischof, O. Langval, A. Mysterud, J. Kindberg, J.E. Swenson, and A. Zedrosser. 2017. Berry production drives bottom-up effects on body mass and reproductive success in an omnivore. Oikos 127: 197–207. https://doi.org/10.1111/oik.04515.

    Article  Google Scholar 

  • Hill, G.B., and G.H.R. Henry. 2011. Responses of High Arctic wet sedge tundra to climate warming since 1980. Global Change Biology 17: 276–287. https://doi.org/10.1111/j.1365-2486.2010.02244.x.

    Article  Google Scholar 

  • Hobbie, S.E., and F.S. Chapin III. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79: 1526–1544. https://doi.org/10.1890/0012-9658(1998)079%5b1526:trotpb%5d2.0.co;2.

    Article  Google Scholar 

  • Hollister, R.D., J.L. May, K.S. Kremers, C.E. Tweedie, S.F. Oberbauer, J.A. Liebig, T.F. Botting, R.T. Barrett, et al. 2015. Warming experiments elucidate the drivers of observed directional changes in tundra vegetation. Ecology and Evolution 5: 1881–1895. https://doi.org/10.1002/ece3.1499.

    Article  Google Scholar 

  • Hollister, R.D., and P.J. Webber. 2000. Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology 6: 835–842.

    Article  Google Scholar 

  • Høye, T.T., E.S. Post, H. Meltofte, N.M. Schmidt, and M.C. Forchhammer. 2007. Rapid advancement of spring in the High Arctic. Current Biology 17: R449–R451. https://doi.org/10.1016/j.cub.2007.04.047.

    CAS  Article  Google Scholar 

  • Høye, T.T., E. Post, N.M. Schmidt, K. Trøjelsgaard, and M.C. Forchhammer. 2013. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nature Climate Change 3: 759–763. https://doi.org/10.1038/nclimate1909.

    Article  Google Scholar 

  • Hudson, J.M.G., and G.H.R. Henry. 2009. Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology 90: 2657–2663.

    CAS  Article  Google Scholar 

  • Hudson, J.M.G., and G.H.R. Henry. 2010. High Arctic plant community resists 15 years of experimental warming. Journal of Ecology 98: 1035–1041. https://doi.org/10.1111/j.1365-2745.2010.01690.x.

    Article  Google Scholar 

  • Hudson, J.M.G., G.H.R. Henry, and W.K. Cornwell. 2011. Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biology 17: 1013–1021. https://doi.org/10.1111/j.1365-2486.2010.02294.x.

    Article  Google Scholar 

  • Iler, A.M., T.T. Høye, D.W. Inouye, and N.M. Schmidt. 2013. Nonlinear flowering responses to climate: Are species approaching their limits of phenological change? Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20120489. https://doi.org/10.1098/rstb.2012.0489.

    Article  Google Scholar 

  • IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. T.F. Stocker, D. Quin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, et al. Cambridge: Cambridge University Press.

  • Jägerbrand, A.K., J.M. Alatalo, D. Chrimes, and U. Molau. 2009. Plant community responses to 5 years of simulated climate change in meadow and heath ecosystems at a sub-Arctic–alpine site. Oecologia 161: 601–610. https://doi.org/10.1007/s00442-009-1392-z.

    Article  Google Scholar 

  • Jandt, R., K. Joly, C.R. Meyers, and C. Racine. 2008. Slow recovery of lichen on burned Caribou Winter Range in Alaska Tundra: Potential influences of climate warming and other disturbance factors. Arctic, Antarctic, and Alpine Research 40: 89–95. https://doi.org/10.1657/1523-0430(06-122)%5bjandt%5d2.0.co;2.

    Article  Google Scholar 

  • Joly, K., R.R. Jandt, C.R. Meyers, and M.J. Cole. 2007. Changes in vegetative cover on Western Arctic Herd winter range from 1981 to 2005: Potential effects of grazing and climate change. Rangifer 17: 199–207.

    Article  Google Scholar 

  • Jonasson, S., A. Michelsen, I.K. Schmidt, and E.V. Nielsen. 1999. Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology 80: 1828–1843. https://doi.org/10.1890/0012-9658(1999)080%5b1828:rimapt%5d2.0.co;2.

    Article  Google Scholar 

  • Jones, M.H., C. Bay, and U. Nordenhäll. 1997. Effects of experimental warming on Arctic willows (Salix spp.): A comparison of responses from the Canadian High Arctic, Alaskan Arctic, and Swedish Sub-Arctic. Global Change Biology 3: 55–60. https://doi.org/10.1111/j.1365-2486.1997.gcb135.x.

    Article  Google Scholar 

  • Jónsdóttir, I.S., B. Magnússon, J. Gudmundsson, A. Elmarsdottir, and H. Hjartarson. 2005. Variable sensitivity of plant communities in Iceland to experimental warming. Global Change Biology 11: 553–563. https://doi.org/10.1111/j.1365-2486.2005.00928.x.

    Article  Google Scholar 

  • Jorgenson, J.C., M.K. Raynolds, J.H. Reynolds, and A.-M. Benson. 2015. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arctic, Antarctic, and Alpine Research 47: 785–806. https://doi.org/10.1657/aaar0014-097.

    Article  Google Scholar 

  • Kerby, J., and E. Post. 2013. Capital and income breeding traits differentiate trophic match–mismatch dynamics in large herbivores. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368. https://doi.org/10.1098/rstb.2012.0484.

    Article  Google Scholar 

  • Klady, R.A., G.H.R. Henry, and V. Lemay. 2011. Changes in High Arctic tundra plant reproduction in response to long-term experimental warming. Global Change Biology 17: 1611–1624. https://doi.org/10.1111/j.1365-2486.2010.02319.x.

    Article  Google Scholar 

  • Koven, C.D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai. 2011. Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences of the United States of America 108: 14769–14774. https://doi.org/10.1073/pnas.1103910108.

    Article  Google Scholar 

  • Kummerow, J. 1992. Phenology, resource allocation, and growth of Arctic vascular plants. In Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, ed. F.S. Chapin III, R. Jefferies, J. Reynolds, G.R. Shaver, and J. Svoboda, 193–211. San Diego: Academic.

    Google Scholar 

  • Lang, S.I., J.H.C. Cornelissen, G.R. Shaver, M. Ahrens, T.V. Callaghan, U. Molau, C.J.F. Ter Braak, A. Hölzer, et al. 2012. Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Global Change Biology 18: 1096–1107. https://doi.org/10.1111/j.1365-2486.2011.02570.x.

    Article  Google Scholar 

  • Marchand, F.L., I. Nijs, M. Heuer, S. Mertens, F. Kockelbergh, J.-Y. Pontailler, I. Impens, and L. Beyens. 2004. Climate warming postpones senescence in High Arctic tundra. Arctic, Antarctic, and Alpine Research 36: 390–394.

    Article  Google Scholar 

  • Marion, G.M., G.H.R. Henry, D.W. Freckman, J. Johnstone, G. Jones, M.H. Jones, E. Lévesque, U. Molau, et al. 1997. Open‐top designs for manipulating field temperature in high‐latitude ecosystems. Global Change Biology 3: 20–32.

    Article  Google Scholar 

  • Martin, A.C., E.S. Jeffers, G. Petrokofsky, I. Myers-Smith, and M. Macias-Fauria. 2017. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environmental Research Letters 12: 085007–085014. https://doi.org/10.1088/1748-9326/aa7989.

    Article  Google Scholar 

  • McKinnon, L., M. Picotin, E. Bolduc, C. Juillet, and J. Bêty. 2012. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Canadian Journal of Zoology 90: 961–971. https://doi.org/10.1139/z2012-064.

    Article  Google Scholar 

  • Molau, U. 2010. Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology and Diversity 3: 29–34. https://doi.org/10.1080/17550874.2010.487548.

    Article  Google Scholar 

  • Molau, U., and P. Mølgaard. 1996. International Tundra Experiment (ITEX) Manual, 2nd ed. Copenhagen: Danish Polar Center.

    Google Scholar 

  • Muc, M., B. Freedman, and J. Svoboda. 1989. Vascular plant communities of a polar oasis at Alexandra Fiord (79 N), Ellesmere Island, Canada. Canadian Journal of Botany 67: 1126–1136.

    Article  Google Scholar 

  • Myers-Smith, I.H., S.C. Elmendorf, P.S.A. Beck, M. Wilmking, M. Hallinger, D. Blok, K.D. Tape, S.A. Rayback, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5: 887–891. https://doi.org/10.1038/nclimate2697.

    Article  Google Scholar 

  • Myers-Smith, I.H., B.C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K.D. Tape, M. Macias-Fauria, et al. 2011a. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6: 045509.

    Article  Google Scholar 

  • Myers-Smith, I.H., and D.S. Hik. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow–shrub interactions. Ecology and Evolution 3: 3683–3700. https://doi.org/10.1002/ece3.710.

    Article  Google Scholar 

  • Myers-Smith, I.H., D.S. Hik, C. Kennedy, D. Cooley, J.F. Johnstone, A.J. Kenney, and C.J. Krebs. 2011b. Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. Ambio 40: 610–623. https://doi.org/10.1007/s13280-011-0168-y.

    Article  Google Scholar 

  • Myers-Smith, I.H., M.M. Grabowski, H. Thomas, S. Angers-Blondin, G. Daskalova, A.D. Bjorkman, A.M. Cunliffe, J.J. Assmann, et al. 2019. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecological Monographs. https://doi.org/10.1002/ecm.1351.

    Article  Google Scholar 

  • Natali, S.M., E.A.G. Schuur, and R.L. Rubin. 2012. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology 100: 488–498. https://doi.org/10.1111/j.1365-2745.2011.01925.x.

    Article  Google Scholar 

  • Oberbauer, S.F., S.C. Elmendorf, T.G. Troxler, R.D. Hollister, A.V. Rocha, M.S. Bret-Harte, M.A. Dawes, A.M. Fosaa, et al. 2013. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philosophical Transactions of the Royal Society, Series B: Biological Sciences. https://doi.org/10.1098/rstb.2012.0481.

    Article  Google Scholar 

  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37: 637–669.

    Article  Google Scholar 

  • Pattison, R.R., J.C. Jorgenson, M.K. Reynolds, and J.M. Welker. 2015. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems. https://doi.org/10.1007/s10021-015-9858-9.

    Article  Google Scholar 

  • Pearson, R.G., S.J. Phillips, M.M. Loranty, P.S.A. Beck, T. Damoulas, S.J. Knight, and S.J. Goetz. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3: 673–677. https://doi.org/10.1038/nclimate1858.

    Article  Google Scholar 

  • Petrenko, C.L., J. Bradley-Cook, E.M. Lacroix, A.J. Friedland, and R.A. Virginia. 2016. Comparison of carbon and nitrogen storage in mineral soils of graminoid and shrub tundra sites, western Greenland. Arctic Science 2: 165–182. https://doi.org/10.1139/as-2015-0023.

    Article  Google Scholar 

  • Post, E., M.C. Forchhammer, M.S. Bret-Harte, T.V. Callaghan, T.R. Christensen, B. Elberling, A.D. Fox, O. Gilg, et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358. https://doi.org/10.1126/science.1173113.

    CAS  Article  Google Scholar 

  • Post, E., and C. Pedersen. 2008. Opposing plant community responses to warming with and without herbivores. Proceedings of the National Academy of Sciences of the United States of America 105: 12353–12358.

    CAS  Article  Google Scholar 

  • Post, E., and N.C. Stenseth. 1999. Climatic variability, plant phenology, and northern ungulates. Ecology 80: 1322–1339. https://doi.org/10.1890/0012-9658(1999)080%5b1322:cvppan%5d2.0.co;2.

    Article  Google Scholar 

  • Prevéy, J., M. Vellend, N. Rüger, R.D. Hollister, A.D. Bjorkman, I.H. Myers-Smith, S.C. Elmendorf, K. Clark, et al. 2017. Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Global Change Biology 23: 2660–2671. https://doi.org/10.1111/gcb.13619.

    Article  Google Scholar 

  • Prevéy, J.S., C. Rixen, N. Rüger, T.T. Høye, A.D. Bjorkman, I.H. Myers-Smith, S.C. Elmendorf, I.W. Ashton, et al. 2019. Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution 3: 45–52. https://doi.org/10.1038/s41559-018-0745-6.

    Article  Google Scholar 

  • Raich, J.W., and C.S. Potter. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles 9: 23–36. https://doi.org/10.1029/94gb02723.

    CAS  Article  Google Scholar 

  • Richardson, S.J., M.C. Press, A.N. Parsons, and S.E. Hartley. 2002. How do nutrients and warming impact on plant communities and their insect herbivores? A 9-year study from a sub-Arctic heath. Journal of Ecology 90: 544–556. https://doi.org/10.1046/j.1365-2745.2002.00681.x.

    Article  Google Scholar 

  • Robinson, C.H., P.A. Wookey, J.A. Lee, T.V. Callaghan, and M.C. Press. 1998. Plant community responses to simulated environmental change at a High Arctic polar semi-desert. Ecology 79: 856. https://doi.org/10.2307/176585.

    Article  Google Scholar 

  • Rundqvist, S., H. Hedenås, A. Sandström, U. Emanuelsson, H. Eriksson, C. Jonasson, and T.V. Callaghan. 2011. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio 40: 683–692. https://doi.org/10.1007/s13280-011-0174-0.

    Article  Google Scholar 

  • Schuur, E.A.G., A.D. McGuire, C. Schädel, G. Grosse, J.W. Harden, D.J. Hayes, G. Hugelius, C.D. Koven, et al. 2015. Climate change and the permafrost carbon feedback. Nature 520: 171–179. https://doi.org/10.1038/nature14338.

    CAS  Article  Google Scholar 

  • Starr, G., S.F. Oberbauer, and E.W. Pop. 2000. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Global Change Biology 6: 357–369.

    Article  Google Scholar 

  • Steinbauer, M.J., J.-A. Grytnes, G. Jurasinski, A. Kulonen, J. Lenoir, H. Pauli, C. Rixen, M. Winkler, et al. 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556: 231–234. https://doi.org/10.1038/s41586-018-0005-6.

    CAS  Article  Google Scholar 

  • Stenström, A., and I.S. Jónsdóttir. 1997. Responses of the clonal sedge, Carex bigelowii, to two seasons of simulated climate change. Global Change Biology 3: 89–96. https://doi.org/10.1111/j.1365-2486.1997.gcb134.x.

    Article  Google Scholar 

  • Stern, G.A., and A. Gaden. 2015. From Science to Policy in the Western and Central Canadian Arctic: An Integrated Regional Impact Study (IRIS) of Climate Change and Modernization. Quebec City: ArcticNet.

    Google Scholar 

  • Sturm, M., and T. Douglas. 2005. Changing snow and shrub conditions affect albedo with global implications. Journal of Geophysical Research 110: G01004. https://doi.org/10.1029/2005jg000013.

    Article  Google Scholar 

  • Sturm, M., C. Racine, and K. Tape. 2001. Increasing shrub abundance in the Arctic. Nature 411: 546–547.

    CAS  Article  Google Scholar 

  • Tolvanen, A., and G.H.R. Henry. 2001. Responses of carbon and nitrogen concentrations in High Arctic plants to experimental warming. Canadian Journal of Botany 79: 711–718. https://doi.org/10.1139/b01-052.

    CAS  Article  Google Scholar 

  • Tømmervik, H., B. Johansen, I. Tombre, D. Thannheiser, K.A. Høgda, E. Gaare, and F.E. Wielgolaski. 2004. Vegetation changes in the Nordic Mountain birch forest: The influence of grazing and climate change. Arctic, Antarctic, and Alpine Research 36: 323–332. https://doi.org/10.1657/1523-0430(2004)036%5b0323:vcitnm%5d2.0.co;2.

    Article  Google Scholar 

  • van Altena, C., R.S.P. van Logtestijn, W.K. Cornwell, and J.H.C. Cornelissen. 2012. Species composition and fire: Non-additive mixture effects on ground fuel flammability. Frontiers in Plant Science 3: 63. https://doi.org/10.3389/fpls.2012.00063.

    Article  Google Scholar 

  • van Gestel, N., Z. Shi, K.J. van Groenigen, C.W. Osenberg, L.C. Andresen, J.S. Dukes, M.J. Hovenden, Y. Luo, et al. 2018. Predicting soil carbon loss with warming. Nature 554: E4–E5. https://doi.org/10.1038/nature25745.

    CAS  Article  Google Scholar 

  • Villarreal, S., R.D. Hollister, D.R. Johnson, M.J. Lara, P.J. Webber, and C.E. Tweedie. 2012. Tundra vegetation change near Barrow, Alaska (1972–2010). Environmental Research Letters 7: 015508–015511. https://doi.org/10.1088/1748-9326/7/1/015508.

    Article  Google Scholar 

  • Vowles, T., C. Lovehav, U. Molau, and R.G. Björk. 2017. Contrasting impacts of reindeer grazing in two tundra grasslands. Environmental Research Letters 12. https://doi.org/10.1088/1748-9326/aa62af.

    Article  Google Scholar 

  • Walker, M.D., C.H. Wahren, R.D. Hollister, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harte, M.P. Calef, T.V. Callaghan, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 1342–1346. https://doi.org/10.1073/pnas.0503198103.

    CAS  Article  Google Scholar 

  • Wang, P., J. Limpens, L. Mommer, J. van Ruijven, A.L. Nauta, F. Berendse, G. Schaepman-Strub, D. Blok, et al. 2017. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. Edited by Etienne Laliberté. Journal of Ecology 105: 947–957. https://doi.org/10.1111/1365-2745.12718.

    Article  Google Scholar 

  • Welker, J.M., U. Molau, A.N. Parsons, C.H. Robinson, and P.A. Wookey. 1997. Responses of Dryas octopetala to ITEX environmental manipulations: A synthesis with circumpolar comparisons. Global Change Biology 3: 61–73.

    Article  Google Scholar 

  • Weller, G., E. Bush, T.V. Callaghan, R. Corell, S. Fox, C. Furgal, A.H. Hoel, H. Huntington, et al. 2004. Summary and synthesis of the ACIA. In Impacts of a Warming Arctic: Arctic Climate Impact Assessment, ed. S.J. Hassol, 990–1020. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wheeler, H.C., T.T. Høye, N.M. Schmidt, J.-C. Svenning, and M.C. Forchhammer. 2015. Phenological mismatch with abiotic conditions—Implications for flowering in Arctic plants. Ecology 96: 775–787.

    Article  Google Scholar 

  • Wilson, S.D., and C. Nilsson. 2009. Arctic alpine vegetation change over 20 years. Global Change Biology 15: 1676–1684. https://doi.org/10.1111/j.1365-2486.2009.01896.x.

    Article  Google Scholar 

  • Wookey, P.A., A.N. Parsons, J.M. Welker, J.A. Potter, T.V. Callaghan, J.A. Lee, and M.C. Press. 1993. Comparative responses of phenology and reproductive development to simulated environmental change in sub-Arctic and High Arctic plants. Oikos 67: 490–502.

    Article  Google Scholar 

  • Zamin, T.J., M.S. Bret-Harte, and P. Grogan. 2014. Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic low Arctic tundra. Journal of Ecology 102: 749–766. https://doi.org/10.1111/1365-2745.12237.

    Article  Google Scholar 

Download references

Acknowledgements

ADB was supported by The Danish Council for Independent Research: Natural Sciences (DFF 4181-00565 to SN); MGC was funded by the University of Edinburgh, IHMS by the UK Natural Environment Research Council (ShrubTundra Project NE/M016323/1); and SN was funded by the Villum Foundation’s Young Investigator Programme (VKR023456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne D. Bjorkman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 66 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bjorkman, A.D., García Criado, M., Myers-Smith, I.H. et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020). https://doi.org/10.1007/s13280-019-01161-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-019-01161-6

Keywords

  • Arctic
  • Experimental warming
  • Long-term monitoring
  • Phenology
  • Vegetation change