pp 1–15 | Cite as

Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring

  • Anne D. BjorkmanEmail author
  • Mariana García Criado
  • Isla H. Myers-Smith
  • Virve Ravolainen
  • Ingibjörg Svala Jónsdóttir
  • Kristine Bakke Westergaard
  • James P. Lawler
  • Mora Aronsson
  • Bruce Bennett
  • Hans Gardfjell
  • Starri Heiðmarsson
  • Laerke Stewart
  • Signe Normand
Terrestrial Biodiversity in a Rapidly Changing Arctic


Changes in Arctic vegetation can have important implications for trophic interactions and ecosystem functioning leading to climate feedbacks. Plot-based vegetation surveys provide detailed insight into vegetation changes at sites around the Arctic and improve our ability to predict the impacts of environmental change on tundra ecosystems. Here, we review studies of changes in plant community composition and phenology from both long-term monitoring and warming experiments in Arctic environments. We find that Arctic plant communities and species are generally sensitive to warming, but trends over a period of time are heterogeneous and complex and do not always mirror expectations based on responses to experimental manipulations. Our findings highlight the need for more geographically widespread, integrated, and comprehensive monitoring efforts that can better resolve the interacting effects of warming and other local and regional ecological factors.


Arctic Experimental warming Long-term monitoring Phenology Vegetation change 



ADB was supported by The Danish Council for Independent Research: Natural Sciences (DFF 4181-00565 to SN); MGC was funded by the University of Edinburgh, IHMS by the UK Natural Environment Research Council (ShrubTundra Project NE/M016323/1); and SN was funded by the Villum Foundation’s Young Investigator Programme (VKR023456).

Supplementary material

13280_2019_1161_MOESM1_ESM.xlsx (65 kb)
Supplementary material 1 (XLSX 66 kb)


  1. Ackerman, D., D. Griffin, S.E. Hobbie, and J.C. Finlay. 2017. Arctic shrub growth trajectories differ across soil moisture levels. Global Change Biology 23: 4294–4302. Scholar
  2. Alatalo, J.M., and Ø. Totland. 1997. Response to simulated climatic change in an alpine and sub-Arctic pollen-risk strategist, Silene acaulis. Global Change Biology 3: 74–79. Scholar
  3. Arft, A.M., M.D. Walker, J.E.A. Gurevitch, J.M. Alatalo, M.S. Bret-Harte, M. Dale, M. Diemer, F. Gugerli, et al. 1999. Responses of tundra plants to experimental warming: Meta-analysis of the International Tundra Experiment. Ecological Monographs 69: 491–511.;2.CrossRefGoogle Scholar
  4. Barrett, R.T.S., R.D. Hollister, S.F. Oberbauer, and C.E. Tweedie. 2015. Arctic plant responses to changing abiotic factors in northern Alaska. American Journal of Botany 102: 2020–2031. Scholar
  5. Baruah, G., U. Molau, Y. Bai, and J.M. Alatalo. 2017. Community and species-specific responses of plant traits to 23 years of experimental warming across sub-Arctic tundra plant communities. Scientific Reports 7: 2571. Scholar
  6. Berteaux, D., D. Reale, A.G. McAdam, and S. Boutin. 2004. Keeping pace with fast climate change: Can Arctic life count on evolution? Integrative and Comparative Biology 44: 140–151.CrossRefGoogle Scholar
  7. Björk, R.G., and U. Molau. 2007. Ecology of alpine snowbeds and the impact of global change. Arctic, Antarctic, and Alpine Research 39: 34–43.CrossRefGoogle Scholar
  8. Bjorkman, A.D., S.C. Elmendorf, A.L. Beamish, M. Vellend, and G.H.R. Henry. 2015. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biology 21: 4651–4661. Scholar
  9. Bjorkman, A.D., I.H. Myers-Smith, S.C. Elmendorf, S. Normand, N. Rüger, P.S.A. Beck, A. Blach-Overgaard, D. Blok, et al. 2018. Plant functional trait change across a warming tundra biome. Nature 562: 57–62. Scholar
  10. Bjorkman, A.D., M. Vellend, E.R. Frei, and G.H.R. Henry. 2017. Climate adaptation is not enough: Warming does not facilitate success of southern tundra plant populations in the High Arctic. Global Change Biology 23: 1540–1551. Scholar
  11. Blok, D., B. Elberling, and A. Michelsen. 2016. Initial stages of tundra shrub litter decomposition may be accelerated by deeper winter snow but slowed down by spring warming. Ecosystems 19: 155–169. Scholar
  12. Blok, D., M.M.P.D. Heijmans, G. Schaepman-Strub, J. van Ruijven, F.J.W. Parmentier, T.C. Maximov, and F. Berendse. 2011. The cooling capacity of mosses: Controls on water and energy fluxes in a Siberian tundra site. Ecosystems 14: 1055–1065. Scholar
  13. Boelman, N.T., L. Gough, J. Wingfield, S. Goetz, A. Asmus, H.E. Chmura, J.S. Krause, J.H. Perez, et al. 2015. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan Arctic tundra. Global Change Biology 21: 1508–1520. Scholar
  14. Boulanger-Lapointe, N., E. Lévesque, S. Boudreau, G.H.R. Henry, and N.M. Schmidt. 2014. Population structure and dynamics of Arctic willow (Salix arctica) in the High Arctic. Journal of Biogeography 41: 1967–1978. Scholar
  15. Bråthen, K.A., V.T. Ravolainen, A. Stien, T. Tveraa, and R.A. Ims. 2017. Rangifer management controls a climate-sensitive tundra state transition. Ecological Applications 27: 2416–2427. Scholar
  16. CAFF. 2013. In Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity, ed. H. Meltofte. Akureyri: Conservation of Arctic Flora and Fauna.Google Scholar
  17. Callaghan, T.V., L.O. Björn, Y. Chernov, F.S. Chapin III, T.R. Christensen, B. Huntley, R.A. Ims, M. Johansson, et al. 2004. Effects on the function of Arctic ecosystems in the short- and long-term perspectives. Ambio 33: 448–458.CrossRefGoogle Scholar
  18. Callaghan, T.V., C.E. Tweedie, J. Akerman, C. Andrews, J. Bergstedt, M.G. Butler, T.R. Christensen, D. Cooley, et al. 2011. Multi-decadal changes in tundra environments and ecosystems: Synthesis of the International Polar Year-Back to the Future Project (IPY-BTF). Ambio 40: 705–716.CrossRefGoogle Scholar
  19. Chapin III, F.S., and G.R. Shaver. 1996. Physiological and growth responses of Arctic plants to a field experiment simulating climatic change. Ecology 77: 822–840. Scholar
  20. Chapin III, F.S., G.R. Shaver, A.E. Giblin, K.J. Nadelhoffer, and J.A. Laundre. 1995. Responses of Arctic tundra to experimental and observed changes in climate. Ecology 76: 694–711.CrossRefGoogle Scholar
  21. Chapin III, F.S., M. Sturm, M.C. Serreze, J.P. McFadden, J.R. Key, A.H. Lloyd, A.D. McGuire, T.S. Rupp, et al. 2005. Role of land-surface changes in Arctic summer warming. Science 310: 657–660. Scholar
  22. Christensen, T., J. Payne, M. Doyle, G. Ibarguchi, J. Taylor, N.M. Schmidt, M. Gill, M. Svoboda, et al. 2013. The Arctic Terrestrial Biodiversity Monitoring Plan. CAFF Monitoring Series Report No. 7. Akureyri: CAFF International Secretariat.
  23. Christiansen, C.T., M.C. Mack, J. DeMarco, and P. Grogan. 2018. Decomposition of senesced leaf litter is faster in tall compared to low birch shrub tundra. Ecosystems 21: 1564–1579. Scholar
  24. Cleland, E.E., J.M. Allen, T.M. Crimmins, J.A. Dunne, S. Pau, S.E. Travers, E.S. Zavaleta, and E.M. Wolkovich. 2012. Phenological tracking enables positive species responses to climate change. Ecology 93: 1765–1771. Scholar
  25. Cooper, E.J., S. Dullinger, and P. Semenchuk. 2011. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Science 180: 157–157. Scholar
  26. Cornelissen, J.H.C., P.M. van Bodegom, R. Aerts, T.V. Callaghan, R.S.P. van Logtestijn, J.M. Alatalo, F.S. Chapin III, R. Gerdol, et al. 2007. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters 10: 619–627. Scholar
  27. Crowther, T.W., K.E.O. Todd-Brown, C.W. Rowe, W.R. Wieder, J.C. Carey, M.B. Machmuller, B.L. Snoek, S. Fang, et al. 2016. Quantifying global soil carbon losses in response to warming. Nature 540: 104–108. Scholar
  28. Daniëls, F.J.A., and J.G. de Molenaar. 2011. Flora and vegetation of Tasiilaq, formerly Angmagssalik, southeast Greenland: A comparison of data between around 1900 and 2007. Ambio 40: 650–659. Scholar
  29. Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, R.G. Björk, A.D. Bjorkman, T.V. Callaghan, L.S. Collier, E.J. Cooper, et al. 2012a. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters 15: 164–175. Scholar
  30. Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, R.G. Björk, N. Boulanger-Lapointe, E.J. Cooper, J.H.C. Cornelissen, T.A. Day, et al. 2012b. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2: 453–457. Scholar
  31. Elmendorf, S.C., G.H.R. Henry, R.D. Hollister, A.M. Fosaa, W.A. Gould, L. Hermanutz, A. Hofgaard, I.I. Jónsdóttir, et al. 2015. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proceedings of the National Academy of Sciences of the United States of America 112: 448–452. Scholar
  32. Freedman, B., and J. Svoboda. 1994. Alexandra Fiord—An ecological oasis in the polar desert. In Ecology of a Polar Oasis, ed. J. Svoboda and B. Freedman. Toronto: Captus University Publications.Google Scholar
  33. Gauthier, G., J. Bêty, M.-C. Cadieux, P. Legagneux, M. Doiron, C. Chevallier, S. Lai, A. Tarroux, et al. 2013. Long-term monitoring at multiple trophic levels suggests heterogeneity in responses to climate change in the Canadian Arctic tundra. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368: 20120482. Scholar
  34. Graglia, E., S. Jonasson, A. Michelsen, and I.K. Schmidt. 1997. Effects of shading, nutrient application and warming on leaf growth and shoot densities of dwarf shrubs in two Arctic–alpine plant communities. Écoscience 4: 191–198. Scholar
  35. Graglia, E., S. Jonasson, A. Michelsen, I.K. Schmidt, M. Havström, and L. Gustavsson. 2001. Effects of environmental perturbations on abundance of sub-Arctic plants after three, seven and ten years of treatments. Ecography 24: 5–12. Scholar
  36. Henry, G.H.R., K.A. Harper, W. Chen, J.R. Deslippe, R.F. Grant, P.M. Lafleur, E. Lévesque, S.D. Siciliano, et al. 2012. Effects of observed and experimental climate change on terrestrial ecosystems in northern Canada: Results from the Canadian IPY Program. Climatic Change 115: 207–234. Scholar
  37. Henry, G.H.R., and U. Molau. 1997. Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology 3: 1–9.CrossRefGoogle Scholar
  38. Hertel, A.G., R. Bischof, O. Langval, A. Mysterud, J. Kindberg, J.E. Swenson, and A. Zedrosser. 2017. Berry production drives bottom-up effects on body mass and reproductive success in an omnivore. Oikos 127: 197–207. Scholar
  39. Hill, G.B., and G.H.R. Henry. 2011. Responses of High Arctic wet sedge tundra to climate warming since 1980. Global Change Biology 17: 276–287. Scholar
  40. Hobbie, S.E., and F.S. Chapin III. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79: 1526–1544.;2.CrossRefGoogle Scholar
  41. Hollister, R.D., J.L. May, K.S. Kremers, C.E. Tweedie, S.F. Oberbauer, J.A. Liebig, T.F. Botting, R.T. Barrett, et al. 2015. Warming experiments elucidate the drivers of observed directional changes in tundra vegetation. Ecology and Evolution 5: 1881–1895. Scholar
  42. Hollister, R.D., and P.J. Webber. 2000. Biotic validation of small open-top chambers in a tundra ecosystem. Global Change Biology 6: 835–842.CrossRefGoogle Scholar
  43. Høye, T.T., E.S. Post, H. Meltofte, N.M. Schmidt, and M.C. Forchhammer. 2007. Rapid advancement of spring in the High Arctic. Current Biology 17: R449–R451. Scholar
  44. Høye, T.T., E. Post, N.M. Schmidt, K. Trøjelsgaard, and M.C. Forchhammer. 2013. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nature Climate Change 3: 759–763. Scholar
  45. Hudson, J.M.G., and G.H.R. Henry. 2009. Increased plant biomass in a High Arctic heath community from 1981 to 2008. Ecology 90: 2657–2663.CrossRefGoogle Scholar
  46. Hudson, J.M.G., and G.H.R. Henry. 2010. High Arctic plant community resists 15 years of experimental warming. Journal of Ecology 98: 1035–1041. Scholar
  47. Hudson, J.M.G., G.H.R. Henry, and W.K. Cornwell. 2011. Taller and larger: Shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biology 17: 1013–1021. Scholar
  48. Iler, A.M., T.T. Høye, D.W. Inouye, and N.M. Schmidt. 2013. Nonlinear flowering responses to climate: Are species approaching their limits of phenological change? Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20120489. Scholar
  49. IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. T.F. Stocker, D. Quin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, et al. Cambridge: Cambridge University Press.Google Scholar
  50. Jägerbrand, A.K., J.M. Alatalo, D. Chrimes, and U. Molau. 2009. Plant community responses to 5 years of simulated climate change in meadow and heath ecosystems at a sub-Arctic–alpine site. Oecologia 161: 601–610. Scholar
  51. Jandt, R., K. Joly, C.R. Meyers, and C. Racine. 2008. Slow recovery of lichen on burned Caribou Winter Range in Alaska Tundra: Potential influences of climate warming and other disturbance factors. Arctic, Antarctic, and Alpine Research 40: 89–95.;2.CrossRefGoogle Scholar
  52. Joly, K., R.R. Jandt, C.R. Meyers, and M.J. Cole. 2007. Changes in vegetative cover on Western Arctic Herd winter range from 1981 to 2005: Potential effects of grazing and climate change. Rangifer 17: 199–207.CrossRefGoogle Scholar
  53. Jonasson, S., A. Michelsen, I.K. Schmidt, and E.V. Nielsen. 1999. Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic. Ecology 80: 1828–1843.;2.CrossRefGoogle Scholar
  54. Jones, M.H., C. Bay, and U. Nordenhäll. 1997. Effects of experimental warming on Arctic willows (Salix spp.): A comparison of responses from the Canadian High Arctic, Alaskan Arctic, and Swedish Sub-Arctic. Global Change Biology 3: 55–60. Scholar
  55. Jónsdóttir, I.S., B. Magnússon, J. Gudmundsson, A. Elmarsdottir, and H. Hjartarson. 2005. Variable sensitivity of plant communities in Iceland to experimental warming. Global Change Biology 11: 553–563. Scholar
  56. Jorgenson, J.C., M.K. Raynolds, J.H. Reynolds, and A.-M. Benson. 2015. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arctic, Antarctic, and Alpine Research 47: 785–806. Scholar
  57. Kerby, J., and E. Post. 2013. Capital and income breeding traits differentiate trophic match–mismatch dynamics in large herbivores. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368.
  58. Klady, R.A., G.H.R. Henry, and V. Lemay. 2011. Changes in High Arctic tundra plant reproduction in response to long-term experimental warming. Global Change Biology 17: 1611–1624. Scholar
  59. Koven, C.D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai. 2011. Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences of the United States of America 108: 14769–14774. Scholar
  60. Kummerow, J. 1992. Phenology, resource allocation, and growth of Arctic vascular plants. In Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective, ed. F.S. Chapin III, R. Jefferies, J. Reynolds, G.R. Shaver, and J. Svoboda, 193–211. San Diego: Academic.Google Scholar
  61. Lang, S.I., J.H.C. Cornelissen, G.R. Shaver, M. Ahrens, T.V. Callaghan, U. Molau, C.J.F. Ter Braak, A. Hölzer, et al. 2012. Arctic warming on two continents has consistent negative effects on lichen diversity and mixed effects on bryophyte diversity. Global Change Biology 18: 1096–1107. Scholar
  62. Marchand, F.L., I. Nijs, M. Heuer, S. Mertens, F. Kockelbergh, J.-Y. Pontailler, I. Impens, and L. Beyens. 2004. Climate warming postpones senescence in High Arctic tundra. Arctic, Antarctic, and Alpine Research 36: 390–394.CrossRefGoogle Scholar
  63. Marion, G.M., G.H.R. Henry, D.W. Freckman, J. Johnstone, G. Jones, M.H. Jones, E. Lévesque, U. Molau, et al. 1997. Open‐top designs for manipulating field temperature in high‐latitude ecosystems. Global Change Biology 3: 20–32.CrossRefGoogle Scholar
  64. Martin, A.C., E.S. Jeffers, G. Petrokofsky, I. Myers-Smith, and M. Macias-Fauria. 2017. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environmental Research Letters 12: 085007–085014. Scholar
  65. McKinnon, L., M. Picotin, E. Bolduc, C. Juillet, and J. Bêty. 2012. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Canadian Journal of Zoology 90: 961–971. Scholar
  66. Molau, U. 2010. Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecology and Diversity 3: 29–34. Scholar
  67. Molau, U., and P. Mølgaard. 1996. International Tundra Experiment (ITEX) Manual, 2nd ed. Copenhagen: Danish Polar Center.Google Scholar
  68. Muc, M., B. Freedman, and J. Svoboda. 1989. Vascular plant communities of a polar oasis at Alexandra Fiord (79 N), Ellesmere Island, Canada. Canadian Journal of Botany 67: 1126–1136.CrossRefGoogle Scholar
  69. Myers-Smith, I.H., S.C. Elmendorf, P.S.A. Beck, M. Wilmking, M. Hallinger, D. Blok, K.D. Tape, S.A. Rayback, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nature Climate Change 5: 887–891. Scholar
  70. Myers-Smith, I.H., B.C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K.D. Tape, M. Macias-Fauria, et al. 2011a. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters 6: 045509.CrossRefGoogle Scholar
  71. Myers-Smith, I.H., and D.S. Hik. 2013. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow–shrub interactions. Ecology and Evolution 3: 3683–3700. Scholar
  72. Myers-Smith, I.H., D.S. Hik, C. Kennedy, D. Cooley, J.F. Johnstone, A.J. Kenney, and C.J. Krebs. 2011b. Expansion of canopy-forming willows over the twentieth century on Herschel Island, Yukon Territory, Canada. Ambio 40: 610–623. Scholar
  73. Myers-Smith, I.H., M.M. Grabowski, H. Thomas, S. Angers-Blondin, G. Daskalova, A.D. Bjorkman, A.M. Cunliffe, J.J. Assmann, et al. 2019. Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change. Ecological Monographs. Scholar
  74. Natali, S.M., E.A.G. Schuur, and R.L. Rubin. 2012. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. Journal of Ecology 100: 488–498. Scholar
  75. Oberbauer, S.F., S.C. Elmendorf, T.G. Troxler, R.D. Hollister, A.V. Rocha, M.S. Bret-Harte, M.A. Dawes, A.M. Fosaa, et al. 2013. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philosophical Transactions of the Royal Society, Series B: Biological Sciences. Scholar
  76. Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37: 637–669.CrossRefGoogle Scholar
  77. Pattison, R.R., J.C. Jorgenson, M.K. Reynolds, and J.M. Welker. 2015. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems. Scholar
  78. Pearson, R.G., S.J. Phillips, M.M. Loranty, P.S.A. Beck, T. Damoulas, S.J. Knight, and S.J. Goetz. 2013. Shifts in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3: 673–677. Scholar
  79. Petrenko, C.L., J. Bradley-Cook, E.M. Lacroix, A.J. Friedland, and R.A. Virginia. 2016. Comparison of carbon and nitrogen storage in mineral soils of graminoid and shrub tundra sites, western Greenland. Arctic Science 2: 165–182. Scholar
  80. Post, E., M.C. Forchhammer, M.S. Bret-Harte, T.V. Callaghan, T.R. Christensen, B. Elberling, A.D. Fox, O. Gilg, et al. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325: 1355–1358. Scholar
  81. Post, E., and C. Pedersen. 2008. Opposing plant community responses to warming with and without herbivores. Proceedings of the National Academy of Sciences of the United States of America 105: 12353–12358.CrossRefGoogle Scholar
  82. Post, E., and N.C. Stenseth. 1999. Climatic variability, plant phenology, and northern ungulates. Ecology 80: 1322–1339.;2.CrossRefGoogle Scholar
  83. Prevéy, J., M. Vellend, N. Rüger, R.D. Hollister, A.D. Bjorkman, I.H. Myers-Smith, S.C. Elmendorf, K. Clark, et al. 2017. Greater temperature sensitivity of plant phenology at colder sites: Implications for convergence across northern latitudes. Global Change Biology 23: 2660–2671. Scholar
  84. Prevéy, J.S., C. Rixen, N. Rüger, T.T. Høye, A.D. Bjorkman, I.H. Myers-Smith, S.C. Elmendorf, I.W. Ashton, et al. 2019. Warming shortens flowering seasons of tundra plant communities. Nature Ecology and Evolution 3: 45–52. Scholar
  85. Raich, J.W., and C.S. Potter. 1995. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles 9: 23–36. Scholar
  86. Richardson, S.J., M.C. Press, A.N. Parsons, and S.E. Hartley. 2002. How do nutrients and warming impact on plant communities and their insect herbivores? A 9-year study from a sub-Arctic heath. Journal of Ecology 90: 544–556. Scholar
  87. Robinson, C.H., P.A. Wookey, J.A. Lee, T.V. Callaghan, and M.C. Press. 1998. Plant community responses to simulated environmental change at a High Arctic polar semi-desert. Ecology 79: 856. Scholar
  88. Rundqvist, S., H. Hedenås, A. Sandström, U. Emanuelsson, H. Eriksson, C. Jonasson, and T.V. Callaghan. 2011. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio 40: 683–692. Scholar
  89. Schuur, E.A.G., A.D. McGuire, C. Schädel, G. Grosse, J.W. Harden, D.J. Hayes, G. Hugelius, C.D. Koven, et al. 2015. Climate change and the permafrost carbon feedback. Nature 520: 171–179. Scholar
  90. Starr, G., S.F. Oberbauer, and E.W. Pop. 2000. Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Global Change Biology 6: 357–369.CrossRefGoogle Scholar
  91. Steinbauer, M.J., J.-A. Grytnes, G. Jurasinski, A. Kulonen, J. Lenoir, H. Pauli, C. Rixen, M. Winkler, et al. 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556: 231–234. Scholar
  92. Stenström, A., and I.S. Jónsdóttir. 1997. Responses of the clonal sedge, Carex bigelowii, to two seasons of simulated climate change. Global Change Biology 3: 89–96. Scholar
  93. Stern, G.A., and A. Gaden. 2015. From Science to Policy in the Western and Central Canadian Arctic: An Integrated Regional Impact Study (IRIS) of Climate Change and Modernization. Quebec City: ArcticNet.Google Scholar
  94. Sturm, M., and T. Douglas. 2005. Changing snow and shrub conditions affect albedo with global implications. Journal of Geophysical Research 110: G01004. Scholar
  95. Sturm, M., C. Racine, and K. Tape. 2001. Increasing shrub abundance in the Arctic. Nature 411: 546–547.CrossRefGoogle Scholar
  96. Tolvanen, A., and G.H.R. Henry. 2001. Responses of carbon and nitrogen concentrations in High Arctic plants to experimental warming. Canadian Journal of Botany 79: 711–718. Scholar
  97. Tømmervik, H., B. Johansen, I. Tombre, D. Thannheiser, K.A. Høgda, E. Gaare, and F.E. Wielgolaski. 2004. Vegetation changes in the Nordic Mountain birch forest: The influence of grazing and climate change. Arctic, Antarctic, and Alpine Research 36: 323–332.;2.CrossRefGoogle Scholar
  98. van Altena, C., R.S.P. van Logtestijn, W.K. Cornwell, and J.H.C. Cornelissen. 2012. Species composition and fire: Non-additive mixture effects on ground fuel flammability. Frontiers in Plant Science 3: 63. Scholar
  99. van Gestel, N., Z. Shi, K.J. van Groenigen, C.W. Osenberg, L.C. Andresen, J.S. Dukes, M.J. Hovenden, Y. Luo, et al. 2018. Predicting soil carbon loss with warming. Nature 554: E4–E5. Scholar
  100. Villarreal, S., R.D. Hollister, D.R. Johnson, M.J. Lara, P.J. Webber, and C.E. Tweedie. 2012. Tundra vegetation change near Barrow, Alaska (1972–2010). Environmental Research Letters 7: 015508–015511. Scholar
  101. Vowles, T., C. Lovehav, U. Molau, and R.G. Björk. 2017. Contrasting impacts of reindeer grazing in two tundra grasslands. Environmental Research Letters 12.
  102. Walker, M.D., C.H. Wahren, R.D. Hollister, L.E. Ahlquist, J.M. Alatalo, M.S. Bret-Harte, M.P. Calef, T.V. Callaghan, et al. 2006. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America 103: 1342–1346. Scholar
  103. Wang, P., J. Limpens, L. Mommer, J. van Ruijven, A.L. Nauta, F. Berendse, G. Schaepman-Strub, D. Blok, et al. 2017. Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization. Edited by Etienne Laliberté. Journal of Ecology 105: 947–957. Scholar
  104. Welker, J.M., U. Molau, A.N. Parsons, C.H. Robinson, and P.A. Wookey. 1997. Responses of Dryas octopetala to ITEX environmental manipulations: A synthesis with circumpolar comparisons. Global Change Biology 3: 61–73.CrossRefGoogle Scholar
  105. Weller, G., E. Bush, T.V. Callaghan, R. Corell, S. Fox, C. Furgal, A.H. Hoel, H. Huntington, et al. 2004. Summary and synthesis of the ACIA. In Impacts of a Warming Arctic: Arctic Climate Impact Assessment, ed. S.J. Hassol, 990–1020. Cambridge: Cambridge University Press.Google Scholar
  106. Wheeler, H.C., T.T. Høye, N.M. Schmidt, J.-C. Svenning, and M.C. Forchhammer. 2015. Phenological mismatch with abiotic conditions—Implications for flowering in Arctic plants. Ecology 96: 775–787.CrossRefGoogle Scholar
  107. Wilson, S.D., and C. Nilsson. 2009. Arctic alpine vegetation change over 20 years. Global Change Biology 15: 1676–1684. Scholar
  108. Wookey, P.A., A.N. Parsons, J.M. Welker, J.A. Potter, T.V. Callaghan, J.A. Lee, and M.C. Press. 1993. Comparative responses of phenology and reproductive development to simulated environmental change in sub-Arctic and High Arctic plants. Oikos 67: 490–502.CrossRefGoogle Scholar
  109. Zamin, T.J., M.S. Bret-Harte, and P. Grogan. 2014. Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic low Arctic tundra. Journal of Ecology 102: 749–766. Scholar

Copyright information

© Royal Swedish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Senckenberg Gesellschaft für Naturforschung, Biodiversity and Climate Research Centre (SBiK-F)FrankfurtGermany
  2. 2.Ecoinformatics and Biodiversity, Department of BioscienceAarhus UniversityAarhusDenmark
  3. 3.School of GeoSciencesUniversity of EdinburghEdinburghUK
  4. 4.Norwegian Polar InstituteFram CentreTromsöNorway
  5. 5.Faculty of Life and Environmental SciencesUniversity of IcelandReykjavíkIceland
  6. 6.Norwegian Institute for Nature ResearchTrondheimNorway
  7. 7.Inventory and Monitoring ProgramU.S. National Park ServiceAnchorageUSA
  8. 8.Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
  9. 9.Yukon Conservation Data CentreWhitehorseCanada
  10. 10.Department of Forest Resource ManagementSwedish University of Agricultural SciencesUmeåSweden
  11. 11.Akureyri DivisionIcelandic Institute of Natural HistoryAkureyriIceland
  12. 12.Arctic Ecosystem Ecology, Department of BioscienceAarhus UniversityRoskildeDenmark
  13. 13.Arctic Research Center, Department of BioscienceAarhus UniversityÅrhusDenmark
  14. 14.Center for Biodiversity Dynamic in a Changing World (BIOCHANGE), Department of BioscienceAarhus UniversityÅrhusDenmark

Personalised recommendations