Skip to main content

Advertisement

Log in

Comparison of two methods for indirect measurement of atmospheric dust deposition: Street-dust composition and vegetation-health status derived from hyperspectral image data

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

This study presents a statistical comparison between the in situ measurements of the elemental composition of street dust and a forest health status classification derived from aerial hyperspectral image data (HyMap). Combining these two methods allowed us to indirectly pinpoint at a high spatial resolution the atmospheric dust emissions and its effects in a study area around the open-pit lignite mine in Sokolov, Czech Republic. The results reveal a statistically significant relationship between increased Al, Na, Li and Sr levels in street dust and decreased forest health status, and the highest number of statistically significant correlations within a 100 m distance from the street-dust sampling points. Differences in lithological composition were unable to sufficiently explain these changes, therefore anthropogenic factors like dust emissions from coal mining and coal combustion, as well as urbanisation and other industries might be the reason for this link. Such studies are a crucial step in developing new high spatial resolution methods for determining atmospheric dust deposition and their effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allot, R.W., C.N. Hewitt, and M.R. Kelly. 1990. The environmental half-lives and mean residence times of contaminants in dust for an urban environment: Barrow-in-Furnes. Science of the Total Environment 93: 403–410. https://doi.org/10.1016/0048-9697(90)90131-D.

    Article  Google Scholar 

  • Almeida, S.M., C.A. Pio, M.C. Freitas, M.A. Reis, and M.A. Trancoso. 2006. Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability: Evaluation of road re-suspended dust contribution. Atmospheric Environment 40: 2058–2067.

    Article  CAS  Google Scholar 

  • Balabanova, B., T. Stafilov, R. Šajn, and K. Bačeva. 2014. Comparison of response of moss, lichens and attic dust to geology and atmospheric pollution from copper mine. International Journal of Environmental Science and Technology 11: 517–528. https://doi.org/10.1007/s13762-013-0262-8.

    Article  CAS  Google Scholar 

  • Balabanova, B., T. Stafilov, R. Šajn, and C. Tănăselia. 2017. Long-term geochemical evolution of lithogenic versus anthropogenic distribution of macro and trace elements in household attic dust. Archives of Environmental Contamination and Toxicology 72: 88–107. https://doi.org/10.1007/s00244-016-0336-y.

    Article  CAS  Google Scholar 

  • Bavec, Š., M. Gosar, M. Miler, and H. Biester. 2017. Geochemical investigation of potentially harmful elements in household dust from a mercury-contaminated site, the town of Idrija (Slovenia). Environmental Geochemistry and Health 39: 443–465. https://doi.org/10.1007/s10653-016-9819-z.

    Article  CAS  Google Scholar 

  • Borůvka, L., O. Vacek, and J. Jehlička. 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128: 289–300. https://doi.org/10.1016/j.geoderma.2005.04.010.

    Article  CAS  Google Scholar 

  • Christoforidis, A., and N. Stamatis. 2009. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151: 257–263.

    Article  CAS  Google Scholar 

  • Clevers, J.G.P.W., S.M. De Jong, G.F. Epema, F.D. Van der Meer, W.H. Bakker, A.K. Skid-more, and K.H. Scholte. 2002. Derivation of the red edge index using the MERIS standard band setting. International Journal of Remote Sensing 23: 3169–3184. https://doi.org/10.1080/01431160110104647.

    Article  Google Scholar 

  • Curran, P.J., W.R. Windham, and H.L. Gholz. 1995. Exploring the relationship between reflectance red edge and chlorophyll concentration in Slash Pine Leaves. Tree Physiology 15: 203–206.

    Article  CAS  Google Scholar 

  • Dehghani, S., F. Moore, B. Keshavarzi, and B.A. Hale. 2017. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety 136: 92–103.

    Article  CAS  Google Scholar 

  • Dotzler, S., J. Hill, H. Buddenbaum, and J. Stoffels. 2015. The potential of EnMAP and Sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. Remote Sensing 7: 14227–14258.

    Article  Google Scholar 

  • Egli, M., G. Sartori, A. Mirabella, D. Giaccai, F. Favilli, D. Scherrer, R. Krebs, and E. Delbos. 2010. The influence of weathering and organic matter on heavy metals lability in silicatic Alpine soils. Science of the Total Environment 408: 931–946. https://doi.org/10.1016/j.scitotenv.2009.10.005.

    Article  CAS  Google Scholar 

  • Everitt, J.H., C. Yang, D.E. Escobar, R.I. Lonard, and M.R. Davis. 2002. Reflectance characteristics and remote sensing of a riparian zone in south Texas. The Southwestern Naturalist 47: 433–439.

    Article  Google Scholar 

  • Fernández-Manso, A., O. Fernández-Manso, and C. Quintano. 2016. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and Geoinformation 50: 170–175.

    Article  Google Scholar 

  • Gould, W. 2000. Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications 10: 1861–1870.

    Article  Google Scholar 

  • Harraz, H.Z., M.M. Hamdy, and M.H. El-Mamoney. 2012. Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in Barramiya gold mine Eastern Desert Egypt. Journal of African Earth Sciences 68: 1–14. https://doi.org/10.1016/j.jafrearsci.2012.03.009.

    Article  CAS  Google Scholar 

  • Keshavarzi, B., Z. Tazarvi, M.A. Rajabzadeh, and A. Najmeddin. 2015. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmospheric Environment 119: 1–10.

    Article  CAS  Google Scholar 

  • Kirchgessner, H.D., K. Reichert, K. Hauff, R. Steinbrecher, J.P. Schnitzler, and E.E. Pfundel. 2003. Light and temperature, but not UV radiation, affect chlorophylls and carotenoids in Norway spruce needles (Picea abies (L.) Karst.). Plant, Cell and Environment 26: 1169–1179. https://doi.org/10.1046/j.1365-3040.2003.01043.x.

    Article  CAS  Google Scholar 

  • Knorn, J., A. Rabe, V.C. Radeloff, T. Kuemmerle, J. Kozak, and P. Hostert. 2009. Land cover mapping of large areas using chain classification of neighboring Landsat satellite images. Remote Sensing of Environment 113: 957–964.

    Article  Google Scholar 

  • Kolb, E.C., and D.R. Worsnop. 2012. Chemistry and composition of atmospheric aerosol particles. Annual Review of Physical Chemistry 63: 471–491. https://doi.org/10.1146/annurev-physchem-032511-143706.

    Article  CAS  Google Scholar 

  • Kopačková, V., Z. Lhotáková, F. Oulehle, and J. Albrechtova. 2015. Assessing forest health via linking the geochemical properties of a soil profile with the biochemical parameters of vegetation. International Journal of Environmental Science and Technology 12: 1987–2002. https://doi.org/10.1007/s13762-014-0602-3.

    Article  CAS  Google Scholar 

  • Kopačková, V., J. Mišurec, S. Lhotáková, F. Oulehle, and J. Albrechtová. 2014. Using multi-date high spectral resolution data to assess the physiological status of macroscopically undamaged foliage on a regional scale. International Journal of Applied Earth Observation and Geoinformation 27: 169–186. https://doi.org/10.1016/j.jag.2013.09.009.

    Article  Google Scholar 

  • Lamb, D.W., and R.B. Brown. 2001. Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research 78: 117–125.

    Article  Google Scholar 

  • Laurin, G.V., N. Puletti, W. Hawthorne, V. Liesenberg, P. Corona, D. Papale, Q. Chen, and R. Valentini. 2016. Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment 176: 163–176.

    Article  Google Scholar 

  • Li, H.H., L.J. Chen, L. Yu, Z.B. Guo, C.Q. Shan, J.Q. Lin, J.G. Gu, Z.B. Yang, et al. 2017a. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Science of the Total Environment 586: 1076–1084.

    Article  CAS  Google Scholar 

  • Li, X., T. Wu, H. Bao, X. Liu, C. Xu, Y. Zhao, D. Liu, and H. Yu. 2017b. Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): Spatial distribution, mobility behavior, and health risk. Environmental Science and Pollution Research 24: 19749–19766. https://doi.org/10.1007/s11356-017-9526-z.

    Article  CAS  Google Scholar 

  • Li, Y., Y. Yu, Z. Yang, S. Zhenyao, W. Xuan, and C. Yanpeng. 2016. A comparison of metal distribution in surface dust and soil among super city, town, and rural area. Environmental Science and Pollution Research 23: 7849–7860. https://doi.org/10.1007/s11356-015-5911-7.

    Article  CAS  Google Scholar 

  • Li, Z., X. Feng, G. Li, X. Bi, J. Zhu, H. Qin, Z. Dai, J. Liu, et al. 2013. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China. Environmental Pollution 182: 408–416.

    Article  CAS  Google Scholar 

  • Lu, X.W., L.J. Wang, K. Lei, J. Huang, and Y.X. Zhai. 2009. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal of Hazardous Materials 161: 1058–1062.

    Article  CAS  Google Scholar 

  • MHSPE. 2014. The New Dutchlist. In: Intervention values and target values—soil quality standards. Ministry of Housing, Spatial Planning, and the Environment, Directorate General for Environmental Protection, Department of Soil Protection, The Hague, The Netherlands. . Retrieved January 16, 2014, from http://www.contaminatedland.co.uk/stdguid/dutch-l.htm.

  • Miler, M., and M. Gosar. 2013. Assessment of metal pollution sources by SEM/EDS analysis of solid particles in snow: A case study of Žerjav, Slovenia. Microscopy and Microanalysis 19: 1606–1619. https://doi.org/10.1017/S1431927613013202.

    Article  CAS  Google Scholar 

  • Mišurec, J., V. Kopačková, Z. Lhotáková, J. Hanuš, J. Weyermann, P. Entcheva-Campbell, and J. Albrechtová. 2012. Utilization of hyperspectral image optical indices to assess the Norway spruce forest health status. Journal of Applied Remote Sensing 6: 063545-1.

    Google Scholar 

  • Ordóñez, A., R. Álvarez, E. De Miguel, and S. Charlesworth. 2015. Spatial and temporal variations of trace element distribution in soils and street dust of an industrial town in NW Spain: 15 years of study. Science of the Total Environment 524–525: 93–103.

    Article  CAS  Google Scholar 

  • Penuelas, J., F. Baret, and I. Filella. 1995. Semiempirical indexes to assess carotenoidschlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 31: 221–230.

    CAS  Google Scholar 

  • Pu, R.L., M. Kelly, G.L. Anderson, and P. Gong. 2008. Using CASI hyperspectral imagery to detect mortality and vegetation stress associated with a new hardwood forest disease. Photogrammetric Engineering and Remote Sensing 74: 65–75.

    Article  Google Scholar 

  • Querol, X., J.L. Fernhndez-Turiel, and A. Lopez-Soler. 1995. Trace elements in coal and their behaviour during combustion in a large power station. Fuel 74: 331–343.

    Article  CAS  Google Scholar 

  • Rathod, P.H., D.G. Rossiter, M.F. Noomen, and F.D. van der Meer. 2013. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils. International Journal of Phytoremediation 15: 405–426.

    Article  CAS  Google Scholar 

  • Richter, R. 2009. Atmospheric/topographic correction for airborne imagery. Wessling: DLR German Aerospace Centre.

    Google Scholar 

  • Romer, C., M. Wahabzada, A. Ballvora, F. Pinto, M. Rossini, C. Panigada, J. Behmann, J. Leon, et al. 2012. Early drought stress detection in cereals: Simplex volume maximisation for hyperspectral image analysis. Functional Plant Biology 39: 878–890.

    Article  Google Scholar 

  • Šajn, R., M. Aliu, T. Stafilov, and J. Alijagić. 2013. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovice, Kosovo/Kosove. Journal of Geochemical Exploration 134: 1–16. https://doi.org/10.1016/j.gexplo.2013.06.018.

    Article  CAS  Google Scholar 

  • Salminen, R., M.J. Batista, M. Bidovec, A. Demetriades, B. De Vivo, W. De Vos, M. Duris, A. Gilucis, et al. 2005. Geochemical Atlas of Europe. Part 1—background information, methodology and maps. Geological Survey of Finland, Espoo.

  • Sanches, I.D., C.R. Souza Filho, L.A. Magalhaes, G.C.M. Quiterio, M.N. Alves, and W.J. Oliveira. 2013. Assessing the impact of hydrocarbon leakages on vegetation using reflectance spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing 78: 85–101.

    Article  Google Scholar 

  • Schlapfer, D., 1998. Parametric Geocoding, PARGE Using Guide, Version 2.3. ReSe Applications Schlapfer & Remote Sensing Laboratories, University of Zurich, Zurich.

  • Suchara, I., J. Sucharova, M. Hola, C. Reimann, R. Boyd, P. Filzmoser, and P. Englmaier. 2011. The performance of moss, grass, and 1- and 2-year old spruce needles as bioindicators of contamination: A comparative study at the scale of the Czech Republic. Science of the Total Environmen 409: 2281–2297. https://doi.org/10.1016/j.scitotenv.2011.02.003.

    Article  CAS  Google Scholar 

  • Tang, Z., M. Chai, J. Cheng, J. Jin, Y. Yang, Z. Nie, Q. Huang, and Y. Li. 2017. Contamination and health risks of heavy metals in street dust from a coal-mining city in eastern China. Ecotoxicology and Environmental Safety 138: 83–91.

    Article  CAS  Google Scholar 

  • Vejahati, F., Z. Xu, and R. Gupta. 2010. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization: A review. Fuel 89: 904–911. https://doi.org/10.1016/j.fuel.2009.06.013.

    Article  CAS  Google Scholar 

  • Vogelmann, J.E., G. Xian, C. Homer, and B. Tolk. 2012. Monitoring gradual ecosystem change using Landsat time series analyses: Case studies in selected forest and rangeland ecosystems. Remote Sensing of Environment 122: 92–105.

    Article  Google Scholar 

  • Wei, X., B. Gao, P. Wang, H. Zhou, and J. Lu. 2015. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety 112: 186–192.

    Article  CAS  Google Scholar 

  • Yu, Y., Y. Li, B. Li, and M.K. Stenstrom. 2017. Profiles of lead in urban dust and the effect of the distance to multi-industry in an old heavy industry city in China. Ecotoxicology and Environmental Safety 137: 281–287. https://doi.org/10.1016/j.ecoenv.2016.11.031.

    Article  CAS  Google Scholar 

  • Žibret, G. 2012. Impact of dust filter installation in ironworks and construction on brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenia). Ambio 41: 292–301. https://doi.org/10.1007/s13280-011-0188-7.

    Article  CAS  Google Scholar 

  • Žibret, G., D. Van Tonder, and L. Žibret. 2013. Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic. Environmental Science and Pollution Research 20: 4455–4468. https://doi.org/10.1007/s11356-012-1398-7.

    Article  CAS  Google Scholar 

  • Zierold, K.M., and C.G. Sears. 2015. Community views about the health and exposure of children living near a coal ash storage site. Journal of Community Health 40: 357–363. https://doi.org/10.1007/s10900-014-9943-6.

    Article  Google Scholar 

  • Zinnert, J.C., S.M. Via, and D.R. Young. 2013. Distinguishing natural from anthropogenic stress in plants: Physiology, fluorescence and hyperspectral reflectance. Plant and Soil 366: 133–141.

    Article  CAS  Google Scholar 

Download references

Acknowledegments

The study was funded from the 7th framework programme project EO-MINERS (Grant Agreement No. 244242), by the Slovenian Research Agency (Research Core Funding No. P1-0025) and by the Czech Science Foundation (Grant No. 17-05743S). Authors would also like to thank the Editor and anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gorazd Žibret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Žibret, G., Kopačková, V. Comparison of two methods for indirect measurement of atmospheric dust deposition: Street-dust composition and vegetation-health status derived from hyperspectral image data. Ambio 48, 423–435 (2019). https://doi.org/10.1007/s13280-018-1093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-018-1093-0

Keywords

Navigation