Skip to main content

The U.S. food–energy–water system: A blueprint to fill the mesoscale gap for science and decision-making

Abstract

Food, energy, and water (FEW) are interdependent and must be examined as a coupled natural–human system. This perspective essay defines FEW systems and outlines key findings about them as a blueprint for future models to satisfy six key objectives. The first three focus on linking the FEW production and consumption to impacts on Earth cycles in a spatially specific manner in order to diagnose problems and identify potential solutions. The second three focus on describing the evolution of FEW systems to identify risks, thus empowering the FEW actors to better achieve the goals of resilience and sustainability. Four key findings about the FEW systems that guide future model development are (1) that they engage ecological, carbon, water, and nutrient cycles most powerfully among all human systems; (2) that they operate primarily at a mesoscale best captured by counties, districts, and cities; (3) that cities are hubs within the FEW system; and (4) that the FEW system forms a complex network.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reproduced with permission from Rushforth and Ruddell (2016)

Fig. 5

Reproduced with permission from a Lin et al. (2014), b Dang et al. (2014)

Fig. 6

References

  • Averyt, K., J. Meldrum, P. Caldwell, G. Sun, S. McNulty, A. Huber-Lee, and N. Madden. 2013. Sectoral contributions to surface water stress in the coterminous United States. Environmental Research Letters 8: 035046.

    Article  Google Scholar 

  • Baggio, J.S., B. BurnSilver, A. Arenas, J.S. Magdanz, G.P. Kofinas, and M. De Domenico. 2016. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion. Proceedings of the National Academy of Sciences United States of America 113: 13708–13713. https://doi.org/10.1073/pnas.1604401113.

    Article  CAS  Google Scholar 

  • Bailey, R., and L. Wellesley. 2017. Chokepoints and vulnerabilities in global food trade. London: Chatham House Report.

    Google Scholar 

  • Berardy, A., and M.V. Chester. 2017. Climate change vulnerability in the food, energy, and water nexus: Concerns for agricultural production in Arizona and its urban export supply. Environmental Research Letters 12: 035004.

    Article  Google Scholar 

  • Bettencourt, L.M.A. 2013. The origins of scaling in cities. Science 340: 1438–1441. https://doi.org/10.1126/science.1235823.

    Article  CAS  Google Scholar 

  • Carolan, M.S. 2011. Embodied food politics. Farnham: Ashgate.

    Google Scholar 

  • Chini, C.M., M. Konar, and A.S. Stillwell. 2017. Direct and indirect urban water footprints of the United States. Water Resources Research. https://doi.org/10.1002/2016WR019473.

    Article  Google Scholar 

  • Dalin, C., M. Konar, N. Hanasaki, A. Rinaldo, and I. Rodriguez-Iturbe. 2012. Evolution of the global virtual water trade network. Proceedings of the National Academy of Sciences United States of America 109: 5989–5994.

    Article  Google Scholar 

  • Dang, Q., X. Lin, and M. Konar. 2014. Agricultural virtual water flows within the United States. Water Resources Research 51: 973–986. https://doi.org/10.10002/2014WR015919.

    Article  Google Scholar 

  • D’Odorico, P., F. Laio, and L. Ridolfi. 2010. Does globalization of water reduce societal resilience to drought? Geophysical Research Letters 37: L13403. https://doi.org/10.1029/2010GL043167.

    Article  Google Scholar 

  • Erb, K.-H., F. Krasusman, W. Lucht, and H. Haberl. 2009. Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption. Ecological Economics 69: 328–334.

    Article  Google Scholar 

  • Erb, K.-H., T. Kastner, C. Plutzar, A.L.S. Bais, N. Carvalhais, T. Fetzel, S. Gingrich, H. Haberl, et al. 2017. Research letter: Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553: 73–76. https://doi.org/10.1038/nature25138.

    Article  CAS  Google Scholar 

  • Fargione, J., J. Hill, D. Tilman, S. Polasky, and P. Hawthorne. 2008. Land clearing and the biofuel carbon debt. Science 319: 1235–1238.

    Article  CAS  Google Scholar 

  • FEWSION (2016). Retrieved 2 February 2018 from http://fewsion.us.

  • Fischer-Kowalski, M. 1998. Society’s metabolism: The Intellectual history of materials flow analysis, Part I: 1860–1970. Journal of Industrial Ecology 2: 61–78.

    Article  Google Scholar 

  • Gurney, K.R., D.L. Mendota, Y. Zhou, M.L. Fischer, C.C. Miller, S. Geethakumar, and S. de la Rue de Can. 2009. High resolution fossil fuel combustion CO2 emission fluxes for the United States. Environmental Science and Technology 43: 5535–5541.

    Article  CAS  Google Scholar 

  • Haberl, H., K.H. Erb, F. Krausman, V. Gaube, A. Bondeau, C. Plutzar, S. Gingrich, W. Lucht, and M. Fischer-Kowalski. 2007. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences United States of America 104: 12942–12947.

    Article  CAS  Google Scholar 

  • Haberl, H., M. Fischer-Kowalski, F. Krausman, and V. Winiwarter. 2016. Social ecology: Society-nature relations across space and time. Amsterdam: Springer.

    Book  Google Scholar 

  • Hoekstra, A.Y., A.K. Chapagain, M.M. Aldaya, and M.M. Mekonnen. 2011. Water footprint assessment manual: Setting the global standard. London: Earthscan.

    Google Scholar 

  • Hoekstra, A.Y., and T.O. Wiedmann. 2014. Review: Humanity’s unsustainable environmental footprint. Science 344: 1114–1117.

    Article  CAS  Google Scholar 

  • Hoff, H. 2011. Understanding the Nexus. Background paper for the Bonn 2011 Nexus conference: The Water, Energy and Food Security Nexus. Stockholm: Stockholm Environment Institute.

    Google Scholar 

  • Kaye, J.P., P.M. Groffman, N.B. Grimm, L.A. Baker, and R.V. Pouyat. 2006. A distinct urban biogeochemistry? Trends in Ecology & Evolution 21: 192–199.

    Article  Google Scholar 

  • Kelley, C.P., S. Mohtadi, M.A. Cane, R. Seager, and Y. Kushnir. 2015. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proceedings of the National Academy of Sciences United States of America 112: 3241–3246.

    Article  CAS  Google Scholar 

  • Kennedy, C.A., I. Stewart, A. Facchini, I. Cersosimo, R. Mele, B. Chen, M. Uda, A. Kansai, et al. 2015. Energy and material flows of cities. Proceedings of the National Academy of Sciences United States of America 112: 5985–5990. https://doi.org/10.1073/pnas.1504315112.

    Article  CAS  Google Scholar 

  • Konar, M., C. Dalin, S. Suweis, N. Hanasaki, A. Rinaldo, and I. Rodriguez-Iturbe. 2011. Water for food: The global virtual water trade network. Water Resources Research 47: W05520. https://doi.org/10.1029/2010WR010307.

    Article  Google Scholar 

  • Konar, M., Z. Hussein, N. Hanasaki, D.L. Mauzerall, and I. Rodriguez-Iturbe. 2013. Virtual water trade flows and savings under climate change. Hydrology and Earth System Sciences 17: 3219–3234.

    Article  Google Scholar 

  • Leach, A.M., J.N. Galloway, A. Bleeker, J.W. Erisman, R. Kohn, and J. Kitzes. 2012. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development 1: 40–66.

    Article  Google Scholar 

  • Lin, X., Q. Deng, and M. Konar. 2014. A network analysis of food flows within the United States of America. Environmental Science and Technology 48: 5439–5447. https://doi.org/10.1021/es500471d.

    Article  CAS  Google Scholar 

  • Marston, L.M., X.Cai Konar, and T.J. Troy. 2015. Virtual groundwater transfers from overexploited aquifers of the United States. Proceedings of the National Academy of Sciences United States of America 112: 6561–6566.

    Article  CAS  Google Scholar 

  • McManamay, R.A., S.S. Nair, C.R. DeRolph, B.L. Ruddell, A.M. Morton, R.N. Stewart, M.J. Troia, L. Tran, et al. 2017. US cities can manage national hydrology and biodiversity using local infrastructure policy. Proceedings of the National Academy of Sciences United States of America. https://doi.org/10.1073/pnas.1706201114.

    Article  Google Scholar 

  • Mekonnen, M.M., and A.Y. Hoekstra. 2011. National water footprint accounts: The green, blue and grey water footprint of production and consumption: Volume 1: Main report. Delft: UNESCO-IHE.

    Google Scholar 

  • Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being: synthesis. Washington, DC: Island Press.

    Google Scholar 

  • Mubako, S.T., and C.L. Lant. 2008. Water resource requirements of corn-based ethanol. Water Resources Research. https://doi.org/10.1029/2007wr006683.

    Article  Google Scholar 

  • Mubako, S.T., and C.L. Lant. 2013. Agricultural virtual water trade and water footprint of U.S. states. Annals of the Association of American Geographers 103: 385–396.

    Article  Google Scholar 

  • Rockstrom, J., W. Steffen, K. Noone, A. Persson, F.S. Chapin, E.F. Lambin, T.M. Lenton, M. Scheffer, et al. 2009. A safe operating space for humanity. Nature 461: 472–475. https://doi.org/10.1038/461472a.

    Article  CAS  Google Scholar 

  • Ruddell, B.L. 2017. NWEP: The National Water Economy Project. Retrieved 25 April 2017 from www.nwep.org.

  • Ruddell, B.L., E.A. Adams, R. Richforth, and V.S. Tidwell. 2014. Embedded resource accounting for coupled natural-human systems: An application to water resource impacts of the western US electrical energy trade. Water Resources Research 50: 7957–7972.

    Article  Google Scholar 

  • Rushforth, R.R., and B.L. Ruddell. 2016. The vulnerability and resilience of a city’s water footprint: The case of Flagstaff, Arizona, USA. Water Resources Research 52: 2698–2714. https://doi.org/10.1002/2015WR018006.

    Article  Google Scholar 

  • Rushforth, R.R., and B.L. Ruddell. 2018. A spatially detailed and economically complete blue water footprint of the United States. Hydrology and Earth System Science. https://doi.org/10.5194/hess-2017-650.

    Article  Google Scholar 

  • Sayles, J., and J.A. Baggio. 2017. Who collaborates and why: Assessment and diagnostic of governance network integration for salmon restoration in Whidbey Basin, Puget Sound, WA. Journal of Environmental Management 186: 64–78.

    Article  Google Scholar 

  • Seager, R., M. Ting, I. Held, Y. Kushmir, J. Lu, G. Vecchi, H.-P. Hunag, N. Harnik, A. Leetmaa, N.-C. Lau, C. Li, J. Velez, and N. Naik. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316: 1181–1184.

    Article  CAS  Google Scholar 

  • Seto, K.C., A. Reenberg, C.G. Boone, M. Fragkias, D. Haase, T. Langanke, P. Marcotullio, D.K. Munroe, B. Olah, and D. Simon. 2012. Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences United States of America 109: 7687–7692.

    Article  Google Scholar 

  • Smajgl, A., J. Ward, and L. Pluscjke. 2016. The water-food-energy Nexus: Realising a new paradigm. Journal of Hydrology 533: 533–540.

    Article  Google Scholar 

  • Srinivasan, V., M. Konar, and M. Sivapalan. 2017. A dynamic framework for water security. Water Security 1: 12–20. https://doi.org/10.1016/j.wasec.2017.03.001.

    Article  Google Scholar 

  • Steffen, W., P.J. Crutzen, and J.R. McNeill. 2007. The Anthropocene: Are humans now overwhelming the great forces of nature? Ambio 36: 614–621.

    Article  CAS  Google Scholar 

  • U.S. Energy Information Administration. 2017. Retrieved 7 February 2107 from http://www.eia.gov/petroleum/imports/companylevel/.

  • Vitousek, P.M., P.R. Ehlrich, A.H. Ehrlich, and P.A. Matson. 1986. Human appropriation of the products of photosynthesis. BioScience 36: 368–373.

    Article  Google Scholar 

  • Vörösmarty, C.J., P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan, C.R. Liermann, and P.M. Davies. 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Article  CAS  Google Scholar 

  • Yergin, D. 2011. The quest: Energy, security, and the remaking of the modern world. New York: Penguin Books.

    Google Scholar 

  • Xue, X., and A.E. Landis. 2010. Eutrophication potential of food consumption patterns. Environmental Science and Technology 44: 6450–6456.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is based upon research supported by the National Science Foundation under Grant No. 1639529. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Lant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lant, C., Baggio, J., Konar, M. et al. The U.S. food–energy–water system: A blueprint to fill the mesoscale gap for science and decision-making. Ambio 48, 251–263 (2019). https://doi.org/10.1007/s13280-018-1077-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-018-1077-0

Keywords

  • Environmental footprints
  • Food–energy–water nexus
  • Network analysis
  • Urban ecology