Effects of an invasive polychaete on benthic phosphorus cycling at sea basin scale: An ecosystem disservice

Abstract

Macrofaunal activities in sediments modify nutrient fluxes in different ways including the expression of species-specific functional traits and density-dependent population processes. The invasive polychaete genus Marenzelleria was first observed in the Baltic Sea in the 1980s. It has caused changes in benthic processes and affected the functioning of ecosystem services such as nutrient regulation. The large-scale effects of these changes are not known. We estimated the current Marenzelleria spp. wet weight biomass in the Baltic Sea to be 60–87 kton (95% confidence interval). We assessed the potential impact of Marenzelleria spp. on phosphorus cycling using a spatially explicit model, comparing estimates of expected sediment to water phosphorus fluxes from a biophysical model to ecologically relevant experimental measurements of benthic phosphorus flux. The estimated yearly net increases (95% CI) in phosphorous flux due to Marenzelleria spp. were 4.2–6.1 kton based on the biophysical model and 6.3–9.1 kton based on experimental data. The current biomass densities of Marenzelleria spp. in the Baltic Sea enhance the phosphorus fluxes from sediment to water on a sea basin scale. Although high densities of Marenzelleria spp. can increase phosphorus retention locally, such biomass densities are uncommon. Thus, the major effect of Marenzelleria seems to be a large-scale net decrease in the self-cleaning capacity of the Baltic Sea that counteracts human efforts to mitigate eutrophication in the region.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Al-Hamdani, Z., and J. Reker, ed. Towards marine landscapes in the Baltic Sea, Vol. #10. BALANCE Interim Report, 2007. http://balance-eu.org/. Accessed 04 March 2015.

  2. Bick, A. 2005. A new Spionidae (Polychaeta) from North Carolina and a redescription of Marenzelleria wireni Augener, 1913, from Spitsbergen, with a key for all species of Marenzelleria. Helgoland Marine Research 59: 265–272.

    Article  Google Scholar 

  3. Bick, A., and R. Burckhardt. 1989. First record of Marenzelleria viridis (Polychaeta, Spionidae) in the Baltic Sea, with a key to the Spionidae of the Baltic Sea. Mitteilungen aus dem Zoologischen Museum in Berlin 65: 237–247.

    Article  Google Scholar 

  4. Blank, M., A.O. Laine, K. Juerss, and R. Bastrop. 2008. Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species’ current distribution in the Baltic Sea. Helgoland Marine Research 62: 129–141. https://doi.org/10.1007/s10152-007-0081-8.

    Article  Google Scholar 

  5. Bonaglia, S., M. Bartoli, J.S. Gunnarsson, L. Rahm, C. Raymond, O. Svensson, S.S. Yekta, and V. Brüchert. 2013. Effect of reoxygenation and Marenzelleria spp. bioturbation on Baltic Sea sediment metabolism. Marine Ecology Progress Series 482: 43–55.

    CAS  Article  Google Scholar 

  6. Borg, H., and P. Jonsson. 1996. Large-scale metal distribution in Baltic Sea sediments. Marine Pollution Bulletin 32: 8–21.

    CAS  Article  Google Scholar 

  7. Breiman, L. 2001. Random forests. Machine Learning 45: 5–32.

    Article  Google Scholar 

  8. Bučas, M., U. Bergström, A.L. Downie, G. Sundblad, M. Gullström, M. Von Numers, A. Šiaulys, and M. Lindegarth. 2013. Empirical modelling of benthic species distribution, abundance, and diversity in the Baltic Sea: Evaluating the scope for predictive mapping using different modelling approaches. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fst036.

    Article  Google Scholar 

  9. Carstensen, J., D.J. Conley, E. Bonsdorff, B.G. Gustafsson, S. Hietanen, U. Janas, T. Jilbert, A. Maximov, et al. 2014. Hypoxia in the Baltic Sea: Biogeochemical cycles, benthic fauna, and management. Ambio 43: 26–36. https://doi.org/10.1007/s13280-013-0474-7.

    CAS  Article  Google Scholar 

  10. Chaffin, J.D., and D.D. Kane. 2010. Burrowing mayfly (Ephemeroptera: Ephemeridae: Hexagenia spp.) bioturbation and bioirrigation: A source of internal phosphorus loading in Lake Erie. Journal of Great Lakes Research 36: 57–63.

    CAS  Article  Google Scholar 

  11. Conley, D.J., A. Stockenberg, R. Carman, R.W. Johnstone, L. Rahm, and F. Wulff. 1997. Sediment–water nutrient fluxes in the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science 45: 591–598.

    CAS  Article  Google Scholar 

  12. Conley, D.J., C. Humborg, L. Rahm, O.P. Savchuk, and F. Wulff. 2002. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environmental Science and Technology 36: 5315–5320.

    CAS  Article  Google Scholar 

  13. Cutler, D.R., T.C. Edwards Jr., K.H. Beard, A. Cutler, K.T. Hess, J. Gibson, and J.J. Lawler. 2007. Random forests for classification in ecology. Ecology 88: 2783–2792.

    Article  Google Scholar 

  14. de Groot, R.S., R. Alkemade, L. Braat, L. Hein, and L. Willemen. 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity 7: 260–272.

    Article  Google Scholar 

  15. Gallepp, G.W. 1979. Chironomid influence on phosphorus release in sediment–water microcosms. Ecology 60: 547–556.

    CAS  Article  Google Scholar 

  16. Gogina, M., H. Nygård, M. Blomqvist, D. Daunys, A.B. Josefson, J. Kotta, A. Maximov, J. Warzocha, V. Yermakov, U. Gräwe, and M.L. Zettler. 2016. The Baltic Sea scale inventory of benthic faunal communities. ICES Journal of Marine Science 73: 1196–1213.

    Article  Google Scholar 

  17. Götting, M., S. Mikkat, M. Verleih, and R. Bastrop. 2011. Proteomic comparison of two invasive polychaete species and their naturally occurring F-1-hybrids. Journal of Proteome Research 11: 897–905. https://doi.org/10.1021/pr200710z.

    CAS  Article  Google Scholar 

  18. Granberg, M.E., J.S. Gunnarsson, J.E. Hedman, R. Rosenberg, and P. Jonsson. 2008. Bioturbation-driven release of organic contaminants from Baltic Sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environmental Science and Technology 42: 1058–1065.

    CAS  Article  Google Scholar 

  19. Gren, I.-M., O.P. Savchuck, and T. Jansson. 2013. Cost-effective spatial and dynamic management of a eutrophied Baltic Sea. Marine Resource Economics 28: 263–284.

    Article  Google Scholar 

  20. Gustafsson, B.G., F. Schenk, T. Blenckner, K. Eilola, H.M. Meier, B. Müller-Karulis, T. Neumann, T. Ruoho-Airola, et al. 2012. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio 41: 534–548.

    CAS  Article  Google Scholar 

  21. HELCOM. Ministerial Declaration: Taking further action to implement the Baltic Sea Action Plan—Reaching good environmental status for a healthy Baltic Sea (online). HELCOM: Copenhagen, 2013a.

  22. HELCOM. HELCOM HUB—Technical Report on the HELCOM Underwater Biotope and habitat classification. Baltic Sea Environmental Proceedings 139, 2013b.

  23. HELCOM. Red List of Baltic Sea underwater biotopes, habitats and biotope complexes. Baltic Sea Environmental Proceedings 138, 2013c.

  24. Hietanen, S., A.O. Laine, and K. Lukkari. 2007. The complex effects of the invasive polychaetes Marenzelleria spp. on benthic nutrient dynamics. Journal of Experimental Marine Biology and Ecology 352: 89–102.

    CAS  Article  Google Scholar 

  25. Isaev, A.V., T.R. Eremina, V.A. Ryabchenko, and O.P. Savchuk. 2016. Model estimates of the impact of bioirrigation activity of Marenzelleria spp. on the Gulf of Finland ecosystem in a changing climate. Journal of Marine Systems. https://doi.org/10.1016/j.jmarsys.2016.08.005.

    Article  Google Scholar 

  26. Karlson, K., S. Hulth, K. Ringdahl, and R. Rosenberg. 2005. Experimental recolonisation of Baltic Sea reduced sediments: Survival of benthic macrofauna and effects on nutrient cycling. Marine Ecology Progress Series 294: 35–49.

    CAS  Article  Google Scholar 

  27. Karlson, A.M.L., G. Almqvist, K.E. Skora, and M. Appelberg. 2007. Indications of competition between non-indigenous round goby and native flounder in the Baltic Sea. ICES Journal of Marine Science 64: 479.

    Article  Google Scholar 

  28. Karlson, A.M., J. Näslund, S.B. Rydén, and R. Elmgren. 2011. Polychaete invader enhances resource utilization in a species-poor system. Oecologia 166: 1055–1065.

    Article  Google Scholar 

  29. Kauppi, L., A. Norkko, and J. Norkko. 2015. Large-scale species invasion into a low-diversity system: Spatial and temporal distribution of the invasive polychaetes Marenzelleria spp. in the Baltic Sea. Biological Invasions 17: 2055–2074.

    Article  Google Scholar 

  30. Kauppi, L., J. Norkko, J. Ikonen, and A. Norkko. 2017. Seasonal variability in ecosystem functions: Quantifying the contribution of invasive species to nutrient cycling in coastal ecosystems. Marine Ecology Progress Series 572: 193–207.

    CAS  Article  Google Scholar 

  31. Kauppi, L., A. Norkko, and J. Norkko. 2018. Seasonal population dynamics of the invasive polychaete genus Marenzelleria spp. in contrasting soft-sediment habitats. Journal of Sea Research 131: 46–60.

    Article  Google Scholar 

  32. Kotta, J., H. Orav, and E. Sandberg-Kilpi. 2001. Ecological consequence of the introduction of the polychaete Marenzelleria cf. viridis into a shallow-water biotope of the northern Baltic Sea. Journal of Sea Research 46: 273–280.

    Article  Google Scholar 

  33. Lehtoranta, J., and A.-S. Heiskanen. 2003. Dissolved iron:phosphate ratio as an indicator of phosphate release to oxic water of the inner and outer coastal Baltic Sea. Hydrobiologia 492: 69–84. https://doi.org/10.1023/a:1024822013580.

    CAS  Article  Google Scholar 

  34. Leipe, T., F. Tauber, H. Vallius, J. Virtasalo, S. Uścinowicz, N. Kowalski, S. Hille, S. Lindgren, et al. 2011. Particulate organic carbon (POC) in surface sediments of the Baltic Sea. Geo-Marine Letters 31: 175–188.

    CAS  Article  Google Scholar 

  35. Leppäkoski, E., and S. Olenin. 2000. Non-native species and rates of spread: Lessons from the brackish Baltic Sea. Biological Invasions 2: 151–163. https://doi.org/10.1023/a:1010052809567.

    Article  Google Scholar 

  36. Liaw, A., and M. Wiener. 2002. Classification and regression by randomForest. R News 2: 18–22.

    Google Scholar 

  37. Maes, J., B. Egoh, L. Willemen, C. Liquete, P. Vihervaara, J.P. Schägner, B. Grizzetti, E.G. Drakou, et al. 2012. Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services 1: 31–39.

    Article  Google Scholar 

  38. Maximov, A., E. Bonsdorff, T. Eremina, L. Kauppi, A. Norkko, and J. Norkko. 2015. Context-dependent consequences of Marenzelleria spp. (Spionidae: Polychaeta) invasion for nutrient cycling in the Northern Baltic Sea. Oceanologia 57: 342–348. https://doi.org/10.1016/j.oceano.2015.06.002.

    Article  Google Scholar 

  39. Norkko, J., D.C. Reed, K. Timmermann, A. Norkko, B.G. Gustafsson, E. Bonsdorff, C.P. Slomp, J. Carstensen, et al. 2012. A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology 18: 422–434.

    Article  Google Scholar 

  40. Norling, K. Ecosystem functions in benthos: Importance of macrofaunal bioturbation and biodiversity for mineralization and nutrient fluxes. PhD-Thesis, Department of Marine Ecology, University of Gothenburg, Sweden, 2007.

  41. Norling, K., R. Rosenberg, S. Hulth, A. Grémare, and E. Bonsdorff. 2007. The importance of functional biodiversity and species specific traits of benthic fauna for ecosystem functions in marine sediments. Marine Ecology Progress Series 332: 11–23.

    CAS  Article  Google Scholar 

  42. Quinn, G.P., and M.J. Keough. 2002. Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.

    Google Scholar 

  43. Quintana, C.O., E. Kristensen, and T. Valdemarsen. 2013. Impact of the invasive polychaete Marenzelleria viridis on the biogeochemistry of sandy marine sediments. Biogeochemistry 115: 95–109.

    CAS  Article  Google Scholar 

  44. R Core Team. 2014. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  45. Reed, D.C., C.P. Slomp, and B.G. Gustafsson. 2011. Sedimentary phosphorus dynamics and the evolution of bottom-water hypoxia: A coupled benthic–pelagic model of a coastal system. Limnology and Oceanography 56: 1075–1092.

    CAS  Article  Google Scholar 

  46. Renz, J.R., and S. Forster. 2013. Are similar worms different? A comparative tracer study on bioturbation in the three sibling species Marenzelleria arctia, M. viridis, and M. neglecta from the Baltic Sea. Limnology and Oceanography 58: 2046–2058.

    Article  Google Scholar 

  47. Renz, J.R., and S. Forster. 2014. Effects of bioirrigation by the three sibling species of Marenzelleria spp. on solute fluxes and porewater nutrient profiles. Marine Ecology Progress Series 505: 145–159.

    CAS  Article  Google Scholar 

  48. Sarda, R., I. Valiela, and K. Foreman. 1995. Life cycle, demography, and production of Marenzelleria viridis in a salt-marsh of southern New England. Journal of the Marine Biological Association of the United Kingdom 75: 725–738.

    Article  Google Scholar 

  49. Saunders, M.E., and G.W. Luck. 2016. Limitations of the ecosystem services versus disservices dichotomy. Conservation Biology. https://doi.org/10.1111/cobi.12740.

    Article  Google Scholar 

  50. Urban-Malinga, B., J. Warzocha, and M. Zalewski. 2013. Effects of the invasive polychaete Marenzelleria spp. on benthic processes and meiobenthos of a species-poor brackish system. Journal of Sea Research 80: 25–34.

    Article  Google Scholar 

  51. Viitasalo-Frösén, S., A.O. Laine, and M. Lehtiniemi. 2009. Habitat modification mediated by motile surface stirrers versus semi-motile burrowers: Potential for a positive feedback mechanism in a eutrophied ecosystem. Marine Ecology Progress Series 376: 21–32.

    Article  Google Scholar 

  52. Viktorsson, L., N. Ekeroth, M. Nilsson, M. Kononets, and P.O.J. Hall. 2013. Phosphorus recycling in sediments of the central Baltic Sea. Biogeosciences 10: 3901–3916.

    Article  Google Scholar 

  53. Virnstein, R.W. 1977. The importance of predation by crabs and fishes on benthic infauna in Chesapeake Bay. Ecology 58: 1200–1217.

    Article  Google Scholar 

  54. Wager, S. randomForestCI: Confidence intervals for random forests. R package version 1.0.0. 2016.

  55. Wager, S., T. Hastie, and B. Efron. 2014. Confidence intervals for random forests: The jackknife and the infinitesimal jackknife. Journal of Machine Learning Research 15: 1625–1651.

    Google Scholar 

  56. Winkler, H.M., and L. Debus. Is the polychaete Marenzelleria viridis an important food item for fish. In Proceedings of the 13th symposium of the Baltic marine biologists, 1996, 147–151.

  57. Zettler, L., D. Daunys, J. Kotta, and A. Bick. 2002. History and success of an invasion into the Baltic Sea: The polychaete Marenzelleria cf. viridis, development and strategies. In Invasive aquatic species of Europe. Distribution, impacts and management, ed. E. Leppäkoski, S. Gollasch, and S. Olenin, 66–75. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS) and Swedish Environmental Protection Agency (Naturvårdsverket) for financial support (VALUES Project), and Stockholm Marina Forskningscentrum (Östersjöcentrum) for time and space at Askö Laboratory; Andrey Sikorski for taxonomic expertise; Mats Westerbom for help with the OIVA database; Joanna Norkko, Ragnar Elmgren, Anna-Stiina Heiskanen, Eva Roth, and Gunilla Ejdung for valuable comments on the study; Two anonymous reviewers and the editor, whose comments greatly improved the manuscript; HELCOM as well as laboratory and field staff contributing to the benthic monitoring of the Baltic Sea.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antonia Nyström Sandman.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sandman, A.N., Näslund, J., Gren, I. et al. Effects of an invasive polychaete on benthic phosphorus cycling at sea basin scale: An ecosystem disservice. Ambio 47, 884–892 (2018). https://doi.org/10.1007/s13280-018-1050-y

Download citation

Keywords

  • Benthic–pelagic coupling
  • Ecosystem services
  • Eutrophication
  • Invasive species
  • Nutrient cycling