, Volume 47, Issue 7, pp 771–780 | Cite as

Influence of solid waste and topography on urban floods: The case of Mexico City

  • Luis ZambranoEmail author
  • Rodrigo Pacheco-Muñoz
  • Tania Fernández
Research Article


Floods in cities are increasingly common as a consequence of multifactor watershed dynamics, including geomorphology, land-use changes and land subsidence. However, urban managers have focused on infrastructure to address floods by reducing blocked sewage infrastructure, without significant success. Using Mexico City as a case study, we generated a spatial flood risk model with geomorphology and anthropogenic variables. The results helped contrast the implications of different public policies in land use and waste disposal, and correlating them with flood hazards. Waste disposal was only related to small floods. 58% of the city has a high risk of experiencing small floods, and 24% of the city has a risk for large floods. Half of the population with the lowest income is located in the high-risk areas for large floods. These models are easy to build, generate fast results and are able to help to flood policies, by understanding flood interactions in urban areas within the watershed.


Floods Land subsidence Waste disposal Watershed 



This article was funded by the UK Department for International Development (DFID) and the Netherlands Directorate-General for International Cooperation (DGIS), through the Climate and Development Knowledge Network (CDKN). These findings are not necessarily those of or endorsed by DFID, DGIS or the entities managing CDKN, and are the sole responsibility of the authors. We also want to thank to Fundación Ambiente y Recursos Naturales (FARN), for their facilitations on the elaboration on this study, to SACMEX and CAEM for the information provided.


  1. Adeoye, N.O., A. Ayanlade, and O. Babatmehin. 2009. Climate change and menace of floods in Nigerian cities: Socio-economic implications. Advances in Natural and Applied Sciences 3: 369–377.Google Scholar
  2. Balica, S.F., N.G. Wright, and F. van de Meulen. 2012. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural Hazards 2012: 73–105. Scholar
  3. Bradshaw, C.J.A., N.S. Sodhi, K.S.H. Peh, and B.W. Brook. 2007. Global evidence that deforestation amplifies flood risk and severity in the developing world. Globlal Change Biology 13: 2379–2395. Scholar
  4. Cabral-Cano, E., T.H. Dixon, F. Miralles-Wilhelm, O. Díaz.Molina, O. Sánchez, and R. Carande. 2008. Sapec geodetic imaging of rapid ground subsudende in Mexico City. Geological Society of America Bulletin 120: 1556–1566.CrossRefGoogle Scholar
  5. Candiani, V.S. 2014. Dreaming of dry land environmental tranformation in Colonial Mexico City. Stanford: Standford University Press.CrossRefGoogle Scholar
  6. Chen, J., A.A. Hill, and L.D. Urbano. 2009. A GIS-based model for urban flood inundation. Journal of Hydrology 373: 184–192. Scholar
  7. Conagua. 2008. El Túnel Emisor Oriente duplicará la capacidad del drenaje profundo del Valle de México. Planta.Google Scholar
  8. Dixon, D.H., F. Amelung, A. Ferretti, F. Novali, F. Rocca, R. Dokkas, G. Sella, S.-W. Kim, et al. 2006. Subsidence and flooding in New Orleans. Nature 441: 587–588. Scholar
  9. Ezcurra, E., M. Mazari, I. Pisanty, and A.G. Aguilar. 2006. La cuenca de México. Ciudad de México: Fondo de Cultura Económica.Google Scholar
  10. Field, C.B., V. Barros, T.F. Stocker, Q. Dahe, D.J. Dokkern, K.L. Ebi, and P.M. Midgley. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Scholar
  11. Gaceta Oficial del Distrito Federal (GODF). 2006. Gobierno del Distrito Federal No. 2. p 188.Google Scholar
  12. Garrido, A., J.L. Pérez, and C. Enriquez. 2010. Delimitación de las zonas funcionales de las cuencas hidrográficas de México. México: Instituto Nacional de Ecología. Secretaría de Medio Ambiente y Recursos Naturales.Google Scholar
  13. Haddad, E.A., and E. Teixeira. 2015. Economic impacts of natural disasters in megacities: The case of floods in Sao Paulo, Brazil. Habitat International 45: 106–113.CrossRefGoogle Scholar
  14. Harlan, S.L., A.J. Brazela, L. Prashada, W.L. Stefanovb, and L. Larsenc. 2006. Neighborhood microclimates and vulnerability to heat stress. Social Science and Medicine 63: 2847–2863.CrossRefGoogle Scholar
  15. Hallegatte, S., C. Green, R.J. Nicholls, and J. Corfee-Morlot. 2013. Future flood losses in major coastal cities. Nature Climate Change 3: 802–806. Scholar
  16. Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal Climatology 25: 1965–1978. Scholar
  17. Holzer, T.L., and I.A. Johnson. 1985. land subsidence caused by ground water withdrawal in urban areas. GeoJournal 11: 245–255.CrossRefGoogle Scholar
  18. Ibarra, A.A., L. Zambrano, E.L. Valiente, and A. Ramos-Bueno. 2013. Enhancing the potential value of environmental services in urban wetlands: An agro-ecosystem approach. Cities 31: 438–443. Scholar
  19. Izazola, H. 2001. Agua y sustentabilidad en la Ciudad de México. Estudios demográficos y urbanos, 16: 285–320. El Colegio de México. Scholar
  20. Instituto Nacional de Estadística y Geografía (INEGI). 2010. Panorama sociodemográfico del Distrito Federal. Retrieved from
  21. Instituto Nacional de Estadística y Geografía (INEGI). 2014. Cuaderno estadístico y geográfico de la zona metropolitana del Valle de México.Google Scholar
  22. Jauregui, E., and E. Romales. 1996. Urban effects on convective precipitation in Mexico City. Atmospheric Enviroment 30: 3383–3389.CrossRefGoogle Scholar
  23. Jenerette, G.D., S.L. Harlan, A. Brazel, N. Jones, L. Larsen, and W. Stefanov. 2007. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecology 22: 353–365.CrossRefGoogle Scholar
  24. Jyrkama, M.I., and J.F. Sykes. 2007. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology 338: 237–250. Scholar
  25. Kalantari, Z., A. Nickman, S.W. Lyon, B. Olofsson, and L. Folkeson. 2014. A method for mapping flood hazard along roads. Journal of Environmental Management 133: 69–77. Scholar
  26. Kalantari, Z., M. Cavalli, C. Cantone, S. Crema, and G. Destouni. 2017. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Science of the Total Environment 581–582: 386–398.CrossRefGoogle Scholar
  27. Klomp, J. 2015. Economic development and natural disasters: A satellite data analysis. Global Environmental Change 6: 67–88.Google Scholar
  28. Lankao, P.R. 2010. Water in Mexico City: What will climate change bring to its history of water-related hazards and vulnerabilities? Environment and Urbanization 22: 157–178. Scholar
  29. Legorreta, J. 2006. El agua y la Ciudad de México, 1st ed. Ciudad de México: Universidad Autónoma Metropolitana.Google Scholar
  30. Lot, A., and Z. Cano-Santana. 2009. Biodiversidad del ecosistema del Pedregal de San Ángel. México, DF: Universidad Nacional Autónoma de México. Scholar
  31. Marfai, M.A., and K. Lorenz. 2007. Monitoring land subsidence in Semarang, Indonesia. Environmental Geology 53: 651–659. Scholar
  32. Mazi, K., and A.D. Koussis. 2006. The 8 July 2002 storm over Athens: Analysis of the Kifissos River/Canal overflows. Advances in Geosciences, European Geosciences Union 7: 301–306. Hal-00296930.CrossRefGoogle Scholar
  33. Merlín-Uribe, Y., A. Contreras-Hernández, M. Astier-Calderón, O.P. Jensen, R. Zaragoza, and L. Zambrano. 2012. Urban expansion into a protected natural area in Mexico City: Alternative management scenarios. Journal of Environmental Planning and Management 56: 398–411. Scholar
  34. Merlín-Uribe, Y., C.E. González-Esquivel, A. Contreras-Hernández, L. Zambrano, P. Moreno-Casasola, and M. Astier. 2013. Environmental and socio-economic sustainability of chinampas (raised beds) in Xochimilco, Mexico City. International Journal of Agricultural Sustainability 11: 216–233. Scholar
  35. Mostert, E., and S.J. Junier. 2009. The European flood risk directive: Challenges for research. Hydrology and Earth System Sciences Discussions 6: 4961–4988. Scholar
  36. Notaroa, V., M. De Marchisa, C.M. Fontanazzaa, G. La Loggiab, V. Puleob, and G. Frenia. 2014. The effect of damage functions on urban flood damage appraisal. Procedia Engineering 70: 1251–1260.CrossRefGoogle Scholar
  37. Parker, D.J. 1995. Floods in cities: Increasing exposure and rising impact potential. Hazards in the Built Environment. 21: 114–125.Google Scholar
  38. Pérez, V., and L. Blanco. 2010. Evaluación de amenazas por inundaciones en el centro de México: El caso de Iztapalapa, Distrito Federal (1998-2005). Investigaciones Geográficas 73: 22–40.Google Scholar
  39. Pielke, R.A. 1999. Nine fallacies of floods. Climatic Change 42: 413–438.CrossRefGoogle Scholar
  40. Procuraduria Ambiental y Del Ordenamiento Territorial del D.F.(PAOT). 2010. Presente y futuro de las áreas verdes y del arbolado de la Ciudad de México.Google Scholar
  41. Reinoso, E., M.A. Torees, M. Á. Jaimes, V. Franco, R. Domínguez-Mora, and Ó. Pozos. 2012. Escenarios de pérdidas por inundación pluvial en la ciudad de México ante la falla de algún componente del Sistema de Drenaje Principal. Mexico City.Google Scholar
  42. Ricaño, M. 2015. Sistema de Aguas de la Ciudad de México. Mexico City.Google Scholar
  43. Romero-Lankao, P. 2010. Water in Mexico City: What will climate change bring to its history of water-related hazards and vulnerabilities? Environment and Urbanization 22: 157–178. Scholar
  44. Ruiz-Angulo, A., and E.D. López-Espinoza. 2012. Estimación de la respuesta térmica de la cuenca lacustre del Valle de México en el siglo XVI: Un experimento numérico. Boletín de La Sociedad Geológica Mexicana 67: 215–225.CrossRefGoogle Scholar
  45. Sanderson, D. 2000. Cities, disasters and livelihoods. Environment & Urbanization 12: 93–102.CrossRefGoogle Scholar
  46. Sankarasubramanian, A., and U. Lall. 2003. Flood quantiles in a changing climate: Seasonal forecasts and causal relations. Water Resources Research. Scholar
  47. Scott, S., T. Driesner, and P. Weis. 2015. Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communications 6: 7837. Scholar
  48. Secretaría de Medio Ambiente de la Ciudad de México (SEDEMA). 2015. Residuos Sólidos. Retrieved 18 February, 2015, from
  49. Secretaría de Protección Civil (SPC). 2016. La basura es la causa del 50% de las inundaciones en la Ciudad de México. 2016. Mexico City. Retrieved from
  50. Sistema de Aguas de la Ciudad de México (SACMEX). 2016. Programa Operativo Lluvias. Ciudad de México.Google Scholar
  51. Sistema de Aguas de la Ciudad de México (SACMEX). 2016. Base de datos de bancos de nivel en la Ciudad de México 1983–2007.Google Scholar
  52. Sistema de Información del Desarrollo Social (SIDESO). 2010. Índice de Desarrollo Social de las unidades Territoriales del Distrito Federal. Retrieved 22 February, 2015, from
  53. Sosa-Rodriguez, F.S. 2010. Impacts of water-management decisions on the survival of a city: From ancient tenochtitlan to modern Mexico City. International Journal of Water Resources Development 26: 675–687. Scholar
  54. Soto Montes de Oca G, and M.P. Herrera. 2009. Estudio sobre el impacto del cambio climático en el servicio de abasto de agua de la Zona Metropolitana de la Ciudad de México. Mexico, DF.Google Scholar
  55. Stevaux, J.C., E.M. Latrubesse, M.L. Hermann. 2010. Floods in urban areas of Brazil. In Developments in Earth Surface Processes, Elseviere Scholar
  56. Tingsanchali, T. 2012. Urban flood disaster management. Procedia Engineering 32: 25–37.CrossRefGoogle Scholar
  57. Torres, M.A., M.A. Jaimes, E. Reinoso, and M. Ordaz. 2013. Event-based approach for probabilistic flood risk assessment. International Journal of River Basin Management. Scholar
  58. Tucker, J., M. Daoud, N. Oates, R. Few, D. Conway, S. Mtisi, and S. Matheson. 2015. Social vulnerability in three high-poverty climate change hot spots: What does the climate change literature tell us? Regional Environmental Change 15: 783–800. Scholar
  59. Vargas, R.B., and P. Gourbesville. 2014. Deterministic hydrological model for flood risk assessment of Mexico City. In 11th International Conference on Hydroinformatics (p. 8).Google Scholar
  60. Versini, P.A., E. Gaume, and H. Andrieu. 2010. Assessment of the susceptibility of roads to flooding based on geographical information—test in a flash flood prone area (the Gard region, France). Natural Hazards and Earth System Science 10: 793–803. Scholar
  61. Versini, P.-A. 2012. Use of radar rainfall estimates and forecasts to prevent flash flood in real time by using a road inundation warning system. Journal of Hydrology 416–417: 157–170. Scholar
  62. Ward, P.J., B. Jongman, P. Salamon, A. Simpson, P. Bates, T. De Groeve, S. Muis, E.C. De Perez, et al. 2015. Usefulness and limitations of global flood risk models. Nature Climate Change 5: 712–715. Scholar
  63. Zambrano, L., R. Pacheco-Muñóz, and T. Fernández. 2017. A spatial model for evaluating the vulnerability of water management in Mexico City, Sao Paulo and Buenos Aires considering climate change. Anthropocene 17: 1–12.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Departamento de Zoología, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations