Skip to main content

Advertisement

Log in

Influence of solid waste and topography on urban floods: The case of Mexico City

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Floods in cities are increasingly common as a consequence of multifactor watershed dynamics, including geomorphology, land-use changes and land subsidence. However, urban managers have focused on infrastructure to address floods by reducing blocked sewage infrastructure, without significant success. Using Mexico City as a case study, we generated a spatial flood risk model with geomorphology and anthropogenic variables. The results helped contrast the implications of different public policies in land use and waste disposal, and correlating them with flood hazards. Waste disposal was only related to small floods. 58% of the city has a high risk of experiencing small floods, and 24% of the city has a risk for large floods. Half of the population with the lowest income is located in the high-risk areas for large floods. These models are easy to build, generate fast results and are able to help to flood policies, by understanding flood interactions in urban areas within the watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adeoye, N.O., A. Ayanlade, and O. Babatmehin. 2009. Climate change and menace of floods in Nigerian cities: Socio-economic implications. Advances in Natural and Applied Sciences 3: 369–377.

    Google Scholar 

  • Balica, S.F., N.G. Wright, and F. van de Meulen. 2012. A flood vulnerability index for coastal cities and its use in assessing climate change impacts. Natural Hazards 2012: 73–105. https://doi.org/10.1007/s11069-012-0234-1.

    Article  Google Scholar 

  • Bradshaw, C.J.A., N.S. Sodhi, K.S.H. Peh, and B.W. Brook. 2007. Global evidence that deforestation amplifies flood risk and severity in the developing world. Globlal Change Biology 13: 2379–2395. https://doi.org/10.1111/j.1365-2486.2007.01446.x.

    Article  Google Scholar 

  • Cabral-Cano, E., T.H. Dixon, F. Miralles-Wilhelm, O. Díaz.Molina, O. Sánchez, and R. Carande. 2008. Sapec geodetic imaging of rapid ground subsudende in Mexico City. Geological Society of America Bulletin 120: 1556–1566.

    Article  Google Scholar 

  • Candiani, V.S. 2014. Dreaming of dry land environmental tranformation in Colonial Mexico City. Stanford: Standford University Press.

    Book  Google Scholar 

  • Chen, J., A.A. Hill, and L.D. Urbano. 2009. A GIS-based model for urban flood inundation. Journal of Hydrology 373: 184–192. https://doi.org/10.1016/j.jhydrol.2009.04.021.

    Article  Google Scholar 

  • Conagua. 2008. El Túnel Emisor Oriente duplicará la capacidad del drenaje profundo del Valle de México. Planta.

  • Dixon, D.H., F. Amelung, A. Ferretti, F. Novali, F. Rocca, R. Dokkas, G. Sella, S.-W. Kim, et al. 2006. Subsidence and flooding in New Orleans. Nature 441: 587–588. https://doi.org/10.1038/441587.

    Article  CAS  Google Scholar 

  • Ezcurra, E., M. Mazari, I. Pisanty, and A.G. Aguilar. 2006. La cuenca de México. Ciudad de México: Fondo de Cultura Económica.

    Google Scholar 

  • Field, C.B., V. Barros, T.F. Stocker, Q. Dahe, D.J. Dokkern, K.L. Ebi, and P.M. Midgley. 2012. Managing the risks of extreme events and disasters to advance climate change adaptation: Special report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139177245.

    Book  Google Scholar 

  • Gaceta Oficial del Distrito Federal (GODF). 2006. Gobierno del Distrito Federal No. 2. p 188.

  • Garrido, A., J.L. Pérez, and C. Enriquez. 2010. Delimitación de las zonas funcionales de las cuencas hidrográficas de México. México: Instituto Nacional de Ecología. Secretaría de Medio Ambiente y Recursos Naturales.

    Google Scholar 

  • Haddad, E.A., and E. Teixeira. 2015. Economic impacts of natural disasters in megacities: The case of floods in Sao Paulo, Brazil. Habitat International 45: 106–113.

    Article  Google Scholar 

  • Harlan, S.L., A.J. Brazela, L. Prashada, W.L. Stefanovb, and L. Larsenc. 2006. Neighborhood microclimates and vulnerability to heat stress. Social Science and Medicine 63: 2847–2863.

    Article  Google Scholar 

  • Hallegatte, S., C. Green, R.J. Nicholls, and J. Corfee-Morlot. 2013. Future flood losses in major coastal cities. Nature Climate Change 3: 802–806. https://doi.org/10.1038/NCLIMATE1979.

    Article  Google Scholar 

  • Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal Climatology 25: 1965–1978. https://doi.org/10.1002/joc.1276.

    Article  Google Scholar 

  • Holzer, T.L., and I.A. Johnson. 1985. land subsidence caused by ground water withdrawal in urban areas. GeoJournal 11: 245–255.

    Article  Google Scholar 

  • Ibarra, A.A., L. Zambrano, E.L. Valiente, and A. Ramos-Bueno. 2013. Enhancing the potential value of environmental services in urban wetlands: An agro-ecosystem approach. Cities 31: 438–443. https://doi.org/10.1016/j.cities.2012.08.002.

    Article  Google Scholar 

  • Izazola, H. 2001. Agua y sustentabilidad en la Ciudad de México. Estudios demográficos y urbanos, 16: 285–320. El Colegio de México. http://www.jstor.org/stable/40315074?seq=1#page_scan_tab_contents.

    Article  Google Scholar 

  • Instituto Nacional de Estadística y Geografía (INEGI). 2010. Panorama sociodemográfico del Distrito Federal. Retrieved from http://www.inegi.org.mx/prod_serv/contenidos/espanol/bvinegi/productos/censos/poblacion/2010/panora_socio/df/panorama_df.pdf.

  • Instituto Nacional de Estadística y Geografía (INEGI). 2014. Cuaderno estadístico y geográfico de la zona metropolitana del Valle de México.

  • Jauregui, E., and E. Romales. 1996. Urban effects on convective precipitation in Mexico City. Atmospheric Enviroment 30: 3383–3389.

    Article  CAS  Google Scholar 

  • Jenerette, G.D., S.L. Harlan, A. Brazel, N. Jones, L. Larsen, and W. Stefanov. 2007. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecology 22: 353–365.

    Article  Google Scholar 

  • Jyrkama, M.I., and J.F. Sykes. 2007. The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology 338: 237–250. https://doi.org/10.1016/j.jhydrol.2007.02.036.

    Article  Google Scholar 

  • Kalantari, Z., A. Nickman, S.W. Lyon, B. Olofsson, and L. Folkeson. 2014. A method for mapping flood hazard along roads. Journal of Environmental Management 133: 69–77. https://doi.org/10.1016/j.jenvman.2013.11.032.

    Article  Google Scholar 

  • Kalantari, Z., M. Cavalli, C. Cantone, S. Crema, and G. Destouni. 2017. Flood probability quantification for road infrastructure: Data-driven spatial-statistical approach and case study applications. Science of the Total Environment 581–582: 386–398.

    Article  Google Scholar 

  • Klomp, J. 2015. Economic development and natural disasters: A satellite data analysis. Global Environmental Change 6: 67–88.

    Google Scholar 

  • Lankao, P.R. 2010. Water in Mexico City: What will climate change bring to its history of water-related hazards and vulnerabilities? Environment and Urbanization 22: 157–178. https://doi.org/10.1177/0956247809362636.

    Article  Google Scholar 

  • Legorreta, J. 2006. El agua y la Ciudad de México, 1st ed. Ciudad de México: Universidad Autónoma Metropolitana.

    Google Scholar 

  • Lot, A., and Z. Cano-Santana. 2009. Biodiversidad del ecosistema del Pedregal de San Ángel. México, DF: Universidad Nacional Autónoma de México. https://doi.org/10.1016/j.chembiol.2014.08.006.

    Book  Google Scholar 

  • Marfai, M.A., and K. Lorenz. 2007. Monitoring land subsidence in Semarang, Indonesia. Environmental Geology 53: 651–659. https://doi.org/10.1007/s00254-007-0680-3.

    Article  Google Scholar 

  • Mazi, K., and A.D. Koussis. 2006. The 8 July 2002 storm over Athens: Analysis of the Kifissos River/Canal overflows. Advances in Geosciences, European Geosciences Union 7: 301–306. Hal-00296930.

    Article  Google Scholar 

  • Merlín-Uribe, Y., A. Contreras-Hernández, M. Astier-Calderón, O.P. Jensen, R. Zaragoza, and L. Zambrano. 2012. Urban expansion into a protected natural area in Mexico City: Alternative management scenarios. Journal of Environmental Planning and Management 56: 398–411. https://doi.org/10.1080/09640568.2012.683686.

    Article  Google Scholar 

  • Merlín-Uribe, Y., C.E. González-Esquivel, A. Contreras-Hernández, L. Zambrano, P. Moreno-Casasola, and M. Astier. 2013. Environmental and socio-economic sustainability of chinampas (raised beds) in Xochimilco, Mexico City. International Journal of Agricultural Sustainability 11: 216–233. https://doi.org/10.1080/14735903.2012.726128.

    Article  Google Scholar 

  • Mostert, E., and S.J. Junier. 2009. The European flood risk directive: Challenges for research. Hydrology and Earth System Sciences Discussions 6: 4961–4988. https://doi.org/10.5194/hessd-6-4961-2009.

    Article  Google Scholar 

  • Notaroa, V., M. De Marchisa, C.M. Fontanazzaa, G. La Loggiab, V. Puleob, and G. Frenia. 2014. The effect of damage functions on urban flood damage appraisal. Procedia Engineering 70: 1251–1260.

    Article  Google Scholar 

  • Parker, D.J. 1995. Floods in cities: Increasing exposure and rising impact potential. Hazards in the Built Environment. 21: 114–125.

    Google Scholar 

  • Pérez, V., and L. Blanco. 2010. Evaluación de amenazas por inundaciones en el centro de México: El caso de Iztapalapa, Distrito Federal (1998-2005). Investigaciones Geográficas 73: 22–40.

    Google Scholar 

  • Pielke, R.A. 1999. Nine fallacies of floods. Climatic Change 42: 413–438.

    Article  Google Scholar 

  • Procuraduria Ambiental y Del Ordenamiento Territorial del D.F.(PAOT). 2010. Presente y futuro de las áreas verdes y del arbolado de la Ciudad de México.

  • Reinoso, E., M.A. Torees, M. Á. Jaimes, V. Franco, R. Domínguez-Mora, and Ó. Pozos. 2012. Escenarios de pérdidas por inundación pluvial en la ciudad de México ante la falla de algún componente del Sistema de Drenaje Principal. Mexico City.

  • Ricaño, M. 2015. Sistema de Aguas de la Ciudad de México. Mexico City.

  • Romero-Lankao, P. 2010. Water in Mexico City: What will climate change bring to its history of water-related hazards and vulnerabilities? Environment and Urbanization 22: 157–178. https://doi.org/10.1177/0956247809362636.

    Article  Google Scholar 

  • Ruiz-Angulo, A., and E.D. López-Espinoza. 2012. Estimación de la respuesta térmica de la cuenca lacustre del Valle de México en el siglo XVI: Un experimento numérico. Boletín de La Sociedad Geológica Mexicana 67: 215–225.

    Article  Google Scholar 

  • Sanderson, D. 2000. Cities, disasters and livelihoods. Environment & Urbanization 12: 93–102.

    Article  Google Scholar 

  • Sankarasubramanian, A., and U. Lall. 2003. Flood quantiles in a changing climate: Seasonal forecasts and causal relations. Water Resources Research. https://doi.org/10.1029/2002WR001593.

    Article  Google Scholar 

  • Scott, S., T. Driesner, and P. Weis. 2015. Geologic controls on supercritical geothermal resources above magmatic intrusions. Nature Communications 6: 7837. https://doi.org/10.1038/ncomms8837.

    Article  CAS  Google Scholar 

  • Secretaría de Medio Ambiente de la Ciudad de México (SEDEMA). 2015. Residuos Sólidos. Retrieved 18 February, 2015, from http://www.sedema.df.gob.mx/sedema/index.php/temas-ambientales/programas-generales/residuos-solidos.

  • Secretaría de Protección Civil (SPC). 2016. La basura es la causa del 50% de las inundaciones en la Ciudad de México. 2016. Mexico City. Retrieved from http://proteccioncivil.gob.mx/work/models/ProteccionCivil/swbcalendario_ElementoSeccion/591/BASURA_TRIPTICO.PDF.

  • Sistema de Aguas de la Ciudad de México (SACMEX). 2016. Programa Operativo Lluvias. Ciudad de México.

  • Sistema de Aguas de la Ciudad de México (SACMEX). 2016. Base de datos de bancos de nivel en la Ciudad de México 1983–2007.

  • Sistema de Información del Desarrollo Social (SIDESO). 2010. Índice de Desarrollo Social de las unidades Territoriales del Distrito Federal. Retrieved 22 February, 2015, from http://www.sideso.df.gob.mx/index.php?id=551.

  • Sosa-Rodriguez, F.S. 2010. Impacts of water-management decisions on the survival of a city: From ancient tenochtitlan to modern Mexico City. International Journal of Water Resources Development 26: 675–687. https://doi.org/10.1080/07900627.2010.519503.

    Article  Google Scholar 

  • Soto Montes de Oca G, and M.P. Herrera. 2009. Estudio sobre el impacto del cambio climático en el servicio de abasto de agua de la Zona Metropolitana de la Ciudad de México. Mexico, DF.

  • Stevaux, J.C., E.M. Latrubesse, M.L. Hermann. 2010. Floods in urban areas of Brazil. In Developments in Earth Surface Processes, Elseviere https://doi.org/10.1016/s0928-2025(08)10013-x.

    Google Scholar 

  • Tingsanchali, T. 2012. Urban flood disaster management. Procedia Engineering 32: 25–37.

    Article  Google Scholar 

  • Torres, M.A., M.A. Jaimes, E. Reinoso, and M. Ordaz. 2013. Event-based approach for probabilistic flood risk assessment. International Journal of River Basin Management. https://doi.org/10.1080/15715124.2013.847844.

    Article  Google Scholar 

  • Tucker, J., M. Daoud, N. Oates, R. Few, D. Conway, S. Mtisi, and S. Matheson. 2015. Social vulnerability in three high-poverty climate change hot spots: What does the climate change literature tell us? Regional Environmental Change 15: 783–800. https://doi.org/10.1007/s10113-014-0741-6.

    Article  Google Scholar 

  • Vargas, R.B., and P. Gourbesville. 2014. Deterministic hydrological model for flood risk assessment of Mexico City. In 11th International Conference on Hydroinformatics (p. 8).

  • Versini, P.A., E. Gaume, and H. Andrieu. 2010. Assessment of the susceptibility of roads to flooding based on geographical information—test in a flash flood prone area (the Gard region, France). Natural Hazards and Earth System Science 10: 793–803. https://doi.org/10.5194/nhess-10-793-2010.

    Article  Google Scholar 

  • Versini, P.-A. 2012. Use of radar rainfall estimates and forecasts to prevent flash flood in real time by using a road inundation warning system. Journal of Hydrology 416–417: 157–170. https://doi.org/10.1016/j.jhydrol.2011.11.048.

    Article  Google Scholar 

  • Ward, P.J., B. Jongman, P. Salamon, A. Simpson, P. Bates, T. De Groeve, S. Muis, E.C. De Perez, et al. 2015. Usefulness and limitations of global flood risk models. Nature Climate Change 5: 712–715. https://doi.org/10.1038/nclimate2742.

    Article  Google Scholar 

  • Zambrano, L., R. Pacheco-Muñóz, and T. Fernández. 2017. A spatial model for evaluating the vulnerability of water management in Mexico City, Sao Paulo and Buenos Aires considering climate change. Anthropocene 17: 1–12.

    Article  Google Scholar 

Download references

Acknowledgements

This article was funded by the UK Department for International Development (DFID) and the Netherlands Directorate-General for International Cooperation (DGIS), through the Climate and Development Knowledge Network (CDKN). These findings are not necessarily those of or endorsed by DFID, DGIS or the entities managing CDKN, and are the sole responsibility of the authors. We also want to thank to Fundación Ambiente y Recursos Naturales (FARN), for their facilitations on the elaboration on this study, to SACMEX and CAEM for the information provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Zambrano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambrano, L., Pacheco-Muñoz, R. & Fernández, T. Influence of solid waste and topography on urban floods: The case of Mexico City. Ambio 47, 771–780 (2018). https://doi.org/10.1007/s13280-018-1023-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-018-1023-1

Keywords

Navigation