Skip to main content

Advertisement

Log in

Coral reef aerosol emissions in response to irradiance stress in the Great Barrier Reef, Australia

  • Research Article
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

We investigate the correlation between stress-related compounds produced by corals of the Great Barrier Reef (GBR) and local atmospheric properties—an issue that goes to the core of the coral ecosystem’s ability to survive climate change. We relate the variability in a satellite decadal time series of fine-mode aerosol optical depth (AOD) to a coral stress metric, formulated as a function of irradiance, water clarity, and tide, at Heron Island in the southern GBR. We found that AOD was correlated with the coral stress metric, and the correlation increased at low wind speeds, when horizontal advection of air masses was low and the production of non-biogenic aerosols was minimal. We posit that coral reefs may be able to protect themselves from irradiance stress during calm weather by affecting the optical properties of the atmosphere and local incident solar radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andreae, M.O., C.D. Jones, and P.M. Cox. 2005. Strong present-day aerosol cooling implies a hot future. Nature 435: 1187–1190.

    Article  CAS  Google Scholar 

  • Ayers, G.P., and J.M. Cainey. 2007. The CLAW hypothesis: A review of the major developments. Environmental Chemistry 4: 366–374. https://doi.org/10.1071/en07080.

    Article  CAS  Google Scholar 

  • Ayers, G.P., and R.W. Gillett. 2000. DMS and its oxidation products in the remote marine atmosphere: Implications for climate and atmospheric chemistry. Journal of Sea Research 43: 275–286.

    Article  CAS  Google Scholar 

  • Ayers, G.P., and J.L. Gras. 1991. Seasonal relationship between cloud condensation nuclei and aerosol methanosulphonate in marine air. Nature 353: 834–835.

    Article  CAS  Google Scholar 

  • Berkelmans, R. 2002. Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Marine Ecology Progress Series 229: 73–82.

    Article  Google Scholar 

  • Berkelmans, R., G. De’ath, S. Kininmonth, and W.J. Skirving. 2004. A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: Spatial correlation, patterns, and predictions. Coral Reefs 23: 74–83. https://doi.org/10.1007/s00338-003-0353-y.

    Article  Google Scholar 

  • Bigg, E.K. 2007. Sources, nature and influence on climate of marine airborne particles. Environmental Chemistry 4: 155–161.

    Article  CAS  Google Scholar 

  • Bigg, E.K., and D.E. Turvey. 1978. Sources of atmospheric particles over Australia. Atmospheric Environment 12: 1643–1655. https://doi.org/10.1016/0004-6981(78)90313-x.

    Article  Google Scholar 

  • Bigg, E.K., C. Leck, and L. Tranvik. 2004. Particulates of the surface microlayer of open water in the central Arctic Ocean in summer. Marine Chemistry 91: 131–141.

    Article  CAS  Google Scholar 

  • Broadbent, A.D., and G.B. Jones. 2004. DIMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. Marine and Freshwater Research 55: 849–855. https://doi.org/10.1071/mf04114.

    Article  CAS  Google Scholar 

  • Broadbent, A., and G. Jones. 2006. Seasonal and diurnal cycles of dimethylsulfide, dimethylsulfoniopropionate and dimethylsulfoxide at One Tree Reef Lagoon. Environmental Chemistry 3: 260–267.

    Article  CAS  Google Scholar 

  • Broadbent, A.D., G.B. Jones, and R.J. Jones. 2002. DMSP in corals and benthic algae from the Great Barrier Reef. Estuarine, Coastal and Shelf Science 55: 547–555. https://doi.org/10.1006/ecss.2002.1021.

    Article  CAS  Google Scholar 

  • Brodie, J., T. Schroeder, K. Rohde, J. Faithful, B. Masters, A. Dekker, and M. Maughan. 2010. Dispersal of suspended sediments and nutrients in the Great Barrier Reef lagoon during river-discharge events: Conclusions from satellite remote sensing and concurrent flood-plume sampling. Marine and Freshwater Research 61: 651–664. https://doi.org/10.1071/mf08030.

    Article  CAS  Google Scholar 

  • Burdett, H.L., A.D. Hatton, and N.A. Kamenos. 2015. Coralline algae as a globally significant pool of marine dimethylated sulfur. Global Biogeochemical Cycles 29: 1845–1853. https://doi.org/10.1002/2015gb005274.

    Article  CAS  Google Scholar 

  • Caldeira, K., G. Bala, and L. Cao. 2013. The science of geoengineering. Annual Review of Earth and Planetary Sciences 41: 231–256.

    Article  CAS  Google Scholar 

  • Cavalli, F., M.C. Facchini, S. Decesari, M. Mircea, L. Emblico, S. Fuzzi, D. Ceburnis, Y.J. Yoon, et al. 2004. Advances in characterization of size-resolved organic matter in marine aerosol over the North Atlantic. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2004jd005137.

    Article  Google Scholar 

  • Charlson, R.J., J.E. Lovelock, M.O. Andreae, and S.G. Warren. 1987. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326: 655–661.

    Article  CAS  Google Scholar 

  • Cropp, R.A., A.J. Gabric, M. Levasseur, G.H. McTainsh, A. Bowie, C.S. Hassler, and R.V. Rossel. 2013. The likelihood of observing dust-stimulated phytoplankton growth in waters proximal to the Australian Continent. Journal of Marine Systems 117: 43–52. https://doi.org/10.1016/j.jmarsys.2013.02.013.

    Article  Google Scholar 

  • Curson, A.R.J., J. Liu, A.B. Martínez, R.T. Green, Y. Chan, O. Carrión, and J.T. Todd. 2017. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nature Microbiology. https://doi.org/10.1038/nmicrobiol.2017.9.

    Article  Google Scholar 

  • De’ath, G., K.E. Fabricius, H. Sweatman, and M. Puotinen. 2012. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proceedings of the National Academy of Sciences of USA 109: 17995–17999.

    Article  Google Scholar 

  • Deschaseaux, E.S.M., M.A. Deseo, K.M. Shepherd, G.B. Jones, and P.L. Harrison. 2013. Air blasting as the optimal approach for the extraction of antioxidants in coral tissue. Journal of Experimental Marine Biology and Ecology 448: 146–148. https://doi.org/10.1016/j.jembe.2013.07.002.

    Article  CAS  Google Scholar 

  • Deschaseaux, E., G.B. Jones, M.A. Deseo, K.M. Shepherd, R. Kiene, H. Swan, and B. Eyre. 2014. Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnology and Oceanography 59: 758–768.

    Article  CAS  Google Scholar 

  • Deschaseaux, E., E. Deschaseaux, G. Jones, and H. Swan. 2016. Dimethylated sulfur compounds in coral-reef ecosystems. Environmental Chemistry 13: 239–251. https://doi.org/10.1071/en14258.

    Article  CAS  Google Scholar 

  • Exton, D.A., T.J. McGenity, M. Steinke, D.J. Smith, and D.J. Suggett. 2015. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world. Global Change Biology 21: 1383–1394. https://doi.org/10.1111/gcb.12764.

    Article  Google Scholar 

  • Facchini, M.C., M. Rinaldi, S. Decesari, C. Carbone, E. Finessi, M. Mircea, and C.D. O’Dowd. 2008. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophysical Research Letters 35: L17814. https://doi.org/10.1029/2008gl034210.

    Article  Google Scholar 

  • Fischer, E., and G. Jones. 2012. Atmospheric dimethylsulphide production from corals in the Great Barrier Reef and links to solar radiation, climate and coral bleaching. Biogeochemistry 110: 31–46.

    Article  CAS  Google Scholar 

  • Frade, P., V. Schwaninger, B. Glasl, E. Sintes, R. Hill, R. Simó, and G.J. Herndl. 2015. Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus. Environmental Chemistry 13: 252–265.

    Article  CAS  Google Scholar 

  • Frieler, K., M. Meinshausen, A. Golly, M. Mengel, K. Lebek, S.D. Donner, and O. Hoegh-Guldberg. 2013. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Climate Change 3: 165–170. https://doi.org/10.1038/nclimate1674.

    Article  Google Scholar 

  • Gabric, A.J., R. Simo, R.A. Cropp, A. Hirst, and J. Dachs. 2004. Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions. Global Biogeochemical Cycles 18: GB2014.

    Google Scholar 

  • Gabric, A.J., B. Qu, L. Rotstayn, and J.M. Shephard. 2013. Global simulations of the impact on contemporary climate of a perturbation to the sea-to-air flux of dimethylsulphide. Australian Meteorology and Oceanography Journal 63: 365–376.

    Article  Google Scholar 

  • Gabric, A.J., R. Cropp, G. McTainsh, H. Butler, B.M. Johnston, T. O’Loingsigh, and D.V. Tran. 2016. Tasman Sea biological response to dust storm events during the austral spring of 2009. Marine and Freshwater Research 67: 1090–1102. https://doi.org/10.1071/mf14321.

    Article  Google Scholar 

  • Galí, M., R. Simó, M. Vila-Costa, C. Ruiz-González, J.M. Gasol, and P. Matrai. 2013. Diel patterns of oceanic dimethylsulfide (DMS) cycling: Microbial and physical drivers. Global Biogeochemical Cycles 27: 620–636.

    Article  CAS  Google Scholar 

  • Green, T.K., and A.D. Hatton. 2014. The CLAW hypothesis: A new perspective on the role of biogenic sulphur in the regulation of global climate. In Oceanography and marine biology: An annual review, vol. 52, ed. R.N. Hughes, D.J. Hughes, and I.P. Smith, 315–335. London: CRC Press.

    Google Scholar 

  • Hill, R.W., J.W.H. Dacey, and D.A. Krupp. 1995. Dimethylsulfoniopropionate in reef corals. Bulletin of Marine Science 57: 489–494.

    Google Scholar 

  • Hopkins, F.E., T.G. Bell, M. Yang, D.J. Suggett, and M. Steinke. 2016. Air exposure of coral is a significant source of dimethylsulfide (DMS) to the atmosphere. Scientific Reports. https://doi.org/10.1038/srep36031.

    Article  Google Scholar 

  • Irvine, P.J., B. Kravitz, M.G. Lawrence, D. Gerten, C. Caminade, S.N. Gosling, E.J. Hendy, B.T. Kassie, et al. 2017. Towards a comprehensive climate impacts assessment of solar geoengineering. Earth’s Future 5: 93–106.

    Article  Google Scholar 

  • Jones, G.B., M.A. Curran, and A.D. Broadbent. 1994. Dimethylsulphide in the South Pacific. In Recent advances in marine science and technology’94, eds. O. Bellwood, H. Choat and N. Saxena, 183–194. Pacon International and James Cook University.

  • Jones, G.B. 2015. The reef sulphur cycle: Influence on climate and ecosystem services. In Ethnobiology of corals and coral reefs, ed. N.E. Narchi, and L.L. Price, 27–57. Cham: Springer.

    Chapter  Google Scholar 

  • Jones, G.B., and A.J. Trevena. 2005. The influence of coral reefs on atmospheric dimethylsulphide over the Great Barrier Reef, Coral Sea, Gulf of Papua and Solomon and Bismarck Seas. Marine and Freshwater Research 56: 85–93. https://doi.org/10.1071/MF04097.

    Article  CAS  Google Scholar 

  • Jones, G., M. Curran, A. Broadbent, S. King, E. Fischer, and R. Jones. 2007. Factors affecting the cycling of dimethylsulfide and dimethylsulfoniopropionate in coral reef waters of the Great Barrier Reef. Environmental Chemistry 4: 310–322.

    Article  CAS  Google Scholar 

  • Jones, G.B., E. Fischer, E.S.M. Deschaseaux, and P.L. Harrison. 2014. The effect of coral bleaching on the cellular concentration of dimethylsulphoniopropionate in reef corals. Journal of Experimental Marine Biology and Ecology 460: 19–31. https://doi.org/10.1016/j.jembe.2014.06.003.

    Article  CAS  Google Scholar 

  • Jones, G., M. Curran, H. Swan, and E. Deschaseaux. 2017. Dimethylsulfide and coral bleaching: Links to solar radiation, low level cloud and the regulation of seawater temperatures and climate in the Great Barrier Reef. American Journal of Climate Change 6: 328.

    Article  Google Scholar 

  • Keller, M.D., W.K. Bellows, and R.L. Guillard. 1989. Dimethyl sulfide production in marine phytoplankton. In Biogenic sulfur in the environment, ed. E.S. Saltzman, and W.J. Cooper. Washington, DC: American Chemical Society.

    Google Scholar 

  • Kleypas, J.A., G. Danabasoglu, and J.M. Lough. 2008. Potential role of the ocean thermostat in determining regional differences in coral reef bleaching events. Geophysical Research Letters. https://doi.org/10.1029/2007gl032257.

    Article  Google Scholar 

  • Kleypas, J.A., F.S. Castruccio, E.N. Curchitser, and E. McLeod. 2015. The impact of ENSO on coral heat stress in the western equatorial Pacific. Global Change Biology 21: 2525–2539. https://doi.org/10.1111/gcb.12881.

    Article  Google Scholar 

  • Kroll, J.H., N.L. Ng, S.M. Murphy, R.C. Flagan, and J.H. Seinfeld. 2006. Secondary organic aerosol formation from isoprene photooxidation. Environmental Science and Technology 40: 1869–1877. https://doi.org/10.1021/es0524301.

    Article  CAS  Google Scholar 

  • Kwiatkowski, L., P. Cox, P.R. Halloran, P.J. Mumby, and A.J. Wiltshire. 2015. Coral bleaching under unconventional scenarios of climate warming and ocean acidification. Nature Climate Change 5: 777.

    Article  CAS  Google Scholar 

  • Lana, A., T.G. Bell, R. Simo, S.M. Vallina, J. Ballabrera-Poy, A.J. Kettle, and P.S. Liss. 2011. An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles. https://doi.org/10.1029/2010gb003850.

    Article  Google Scholar 

  • Land, P.E., J.D. Shutler, T.G. Bell, and M. Yang. 2014. Exploiting satellite earth observation to quantify current global oceanic DMS flux and its future climate sensitivity. Journal of Geophysical Research: Oceans 119: 7725–7740.

    CAS  Google Scholar 

  • Leahy, S.M., M.J. Kingsford, and C.R. Steinberg. 2013. Do clouds save the Great Barrier Reef? Satellite imagery elucidates the cloud–SST relationship at the local scale. PLoS ONE 8: e70400.

    Article  CAS  Google Scholar 

  • Leck, C., and E.K. Bigg. 2007. A modified aerosol–cloud–climate feedback hypothesis. Environmental Chemistry 4: 400–403. https://doi.org/10.1071/en07061.

    Article  CAS  Google Scholar 

  • Leck, C., and E.K. Bigg. 2008. Comparison of sources and nature of the tropical aerosol with the summer high Arctic aerosol. Tellus Series B: Chemical and Physical Meteorology 60: 118–126. https://doi.org/10.1111/j.1600-0889.2007.00315.x.

    Article  CAS  Google Scholar 

  • Lough, J.M. 1998. Coastal climate of northwest Australia and comparisons with the Great Barrier Reef: 1960 to 1992. Coral Reefs 17: 351–367. https://doi.org/10.1007/s003380050139.

    Article  Google Scholar 

  • Lu, H., and Y.P. Shao. 2001. Toward quantitative prediction of dust storms: An integrated wind erosion modelling system and its applications. Environmental Modelling and Software 16: 233–249. https://doi.org/10.1016/s1364-8152(00)00083-9.

    Article  Google Scholar 

  • Maalick, Z., H. Korhonen, H. Kokkola, T. Kuhn, and S. Romakkaniemi. 2014. Modelling artificial sea salt emission in large eddy simulations. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences. https://doi.org/10.1098/rsta.2014.0051.

    Article  Google Scholar 

  • McTainsh, G., Y.C. Chan, H. McGowan, J. Leys, and K. Tews. 2005. The 23rd October 2002 dust storm in eastern Australia: Characteristics and meteorological conditions. Atmospheric Environment 39: 1227–1236. https://doi.org/10.1016/j.atmosenv.2004.10.016.

    Article  CAS  Google Scholar 

  • Meskhidze, N., and A. Nenes. 2010. Effects of ocean ecosystem on marine aerosol–cloud interaction. Advances in Meteorology. https://doi.org/10.1155/2010/239808.

    Article  Google Scholar 

  • Meskhidze, N., A. Sabolis, R. Reed, and D. Kamykowski. 2015. Quantifying environmental stress-induced emissions of algal isoprene and monoterpenes using laboratory measurements. Biogeosciences 12: 637–651. https://doi.org/10.5194/bg-12-637-2015.

    Article  CAS  Google Scholar 

  • Michael, K.J., C.J. Veal, and M. Nunez. 2012. Attenuation coefficients of ultraviolet and photosynthetically active wavelengths in the waters of Heron Reef, Great Barrier Reef, Australia. Marine and Freshwater Research 63: 142–149. https://doi.org/10.1071/MF11106.

    Article  Google Scholar 

  • Modini, R.L., Z.D. Ristovski, G.R. Johnson, C. He, N. Surawski, L. Morawska, and M. Kulmala. 2009. New particle formation and growth at a remote, sub-tropical coastal location. Atmospheric Chemistry and Physics 9: 7607–7621.

    Article  CAS  Google Scholar 

  • Niemeier, U., H. Schmidt, K. Alterskjaer, and J.E. Kristjansson. 2013. Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. Journal of Geophysical Research: Atmospheres 118: 11905–11917. https://doi.org/10.1002/2013jd020445.

    Article  Google Scholar 

  • Orellana, M.V., P.A. Matrai, C. Leck, C.D. Rauschenberg, A.M. Lee, and E. Coz. 2011. Marine microgels as a source of cloud condensation nuclei in the high Arctic. Proceedings of the National Academy of Sciences of the USA 108: 13612–13617. https://doi.org/10.1073/pnas.1102457108.

    Article  Google Scholar 

  • Osborne, K., A.M. Dolman, S.C. Burgess, and K.A. Johns. 2011. Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS ONE 6: e17516. https://doi.org/10.1371/journal.pone.0017516.

    Article  CAS  Google Scholar 

  • Pitts, B.F., and J. Pitts. 2000. Chemistry of the upper and lower atmosphere: Theory, experiments and applications. San Diego: Academic.

    Google Scholar 

  • Quinn, P.K., and T.S. Bates. 2011. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480: 51–56. https://doi.org/10.1038/nature10580.

    Article  CAS  Google Scholar 

  • Raina, J.B., D.M. Tapiolas, S. Forêt, A. Lutz, D. Abrego, J. Ceh, F.O. Seneca, P.L. Clode, et al. 2013. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature 502: 677–680. https://doi.org/10.1038/nature12677.

    Article  CAS  Google Scholar 

  • Rap, A., C.E. Scott, D.V. Spracklen, N. Bellouin, P.M. Forster, K.S. Carslaw, and G. Mann. 2013. Natural aerosol direct and indirect radiative effects. Geophysical Research Letters 40: 3297–3301.

    Article  CAS  Google Scholar 

  • Savoca, M.S., and G.A. Nevitt. 2014. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proceedings of the National Academy of Sciences of USA. https://doi.org/10.1073/pnas.1317120111.

    Article  Google Scholar 

  • Shao, Y.P., and L.M. Leslie. 1997. Wind erosion prediction over the Australian Continent. Journal of Geophysical Research: Atmospheres 102: 30091–30105. https://doi.org/10.1029/97jd02298.

    Article  Google Scholar 

  • Shinozuka, Y., A.D. Clarke, S.G. Howell, V.N. Kapustin, and B.J. Huebert. 2004. Sea-salt vertical profiles over the Southern and tropical Pacific oceans: Microphysics, optical properties, spatial variability, and variations with wind speed. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2004JD004975.

    Article  Google Scholar 

  • Simó, R. 2001. Production of atmospheric sulfur by oceanic plankton: Biogeochemical, ecological and evolutionary links. Trends in Ecology and Evolution 16: 287–294.

    Article  Google Scholar 

  • Sunda, W., D.J. Kieber, R.P. Kiene, and S. Huntsman. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature 418: 317–320.

    Article  CAS  Google Scholar 

  • Swan, H.B., R.W. Crough, P. Vaattovaara, G.B. Jones, E.S.M. Deschaseaux, B.D. Eyre, and Z.D. Ristovski. 2016. Dimethyl sulfide and other biogenic volatile organic compound emissions from branching coral and reef seawater: Potential sources of secondary aerosol over the Great Barrier Reef. Journal of Atmospheric Chemistry 73: 303–328. https://doi.org/10.1007/s10874-016-9327-7.

    Article  CAS  Google Scholar 

  • Swan, H.B., G.B. Jones, E.S. Deschaseaux, and B.D. Eyre. 2017. Coral reef origins of atmospheric dimethylsulfide at Heron Island, southern Great Barrier Reef, Australia. Biogeosciences Discussion. https://doi.org/10.5194/bg-14-229-2017.

    Article  Google Scholar 

  • Vaattovaara, P., P.E. Huttunen, Y.J. Yoon, J. Joutsensaari, K.E.J. Lehtinen, C.D. O’Dowd, and A. Laaksonen. 2006. The composition of nucleation and Aitken modes particles during coastal nucleation events: Evidence for marine secondary organic contribution. Atmospheric Chemistry and Physics 6: 4601–4616. https://doi.org/10.5194/acp-6-4601-2006.

    Article  CAS  Google Scholar 

  • Vallina, S.M., and R. Simo. 2007. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science 315: 506–508.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the NASA Ocean Biology Processing Group for providing the MODIS data on our range of ocean parameters, the National Climatic Data Center (NOAA) for the sea surface wind data, and the Australian Government Bureau of Meteorology for the provision of regional tidal height data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Gabric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cropp, R., Gabric, A., van Tran, D. et al. Coral reef aerosol emissions in response to irradiance stress in the Great Barrier Reef, Australia. Ambio 47, 671–681 (2018). https://doi.org/10.1007/s13280-018-1018-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-018-1018-y

Keywords

Navigation