Ambio

, Volume 47, Issue 4, pp 427–440 | Cite as

Aquaculture expansion in Brazilian freshwaters against the Aichi Biodiversity Targets

  • Dilermando Pereira Lima Junior
  • André Lincoln Barroso Magalhães
  • Fernando Mayer Pelicice
  • Jean Ricardo Simões Vitule
  • Valter M. Azevedo-Santos
  • Mário Luís Orsi
  • Daniel Simberloff
  • Angelo Antônio Agostinho
Review

Abstract

The Convention on Biological Diversity proposed the Aichi Biodiversity Targets to improve conservation policies and to balance economic development, social welfare, and the maintenance of biodiversity/ecosystem services. Brazil is a signatory of the Aichi Biodiversity Targets and is the most diverse country in terms of freshwater fish, but its national policies have supported the development of unsustainable commercial and ornamental aquaculture, which has led to serious disturbances to inland ecosystems and natural resources. We analyzed the development of Brazilian aquaculture to show how current aquaculture expansion conflicts with all 20 Aichi Targets. This case suggests that Brazil and many other megadiverse developing countries will not meet international conservation targets, stressing the need for new strategies, such as the environmental management system, to improve biodiversity conservation.

Keywords

Biodiversity conservation Blue revolution Convention on Biological Diversity Environmental management system Megadiversity Non-native invasive species 

Notes

Acknowledgements

We thank Edson Kiyoshi Okada for providing the photo and anonymous reviewers for helpful suggestions on the manuscript. André L. B. Magalhães and Valter M. Azevedo-Santos received CAPES scholarships, and Dilermando P. Lima Jr, Fernando M. Pelicice, Jean R. S. Vitule, and Angelo A. Agostinho received CNPq research grants.

References

  1. Agostinho, A.A., L.C. Gomes, H.I. Suzuki, and H.F. Júlio-Jr. 1999. Riscos da implantação de cultivos de espécies exóticas em tanques-redes em reservatórios do Rio Iguaçu. Cadernos da Biodiversidade 2: 1–9.Google Scholar
  2. Agostinho, A.A., S.M. Thomaz, and L.C. Gomes. 2005. Conservation of the biodiversity of Brazil’s inland waters. Conservation Biology 19: 646–652.  https://doi.org/10.1111/j.1523-1739.2005.00701.x.CrossRefGoogle Scholar
  3. Agostinho, A.A., L.C. Gomes, and F.M. Pelicice. 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Maringá: EDUEM.Google Scholar
  4. Agostinho, A.A., L.C. Gomes, N.C.L. Santos, J.C.G. Ortega, and F.M. Pelicice. 2016. Fish assemblages in neotropical reservoirs: Colonization patterns, impacts and management. Fisheries Research 173: 26–36.CrossRefGoogle Scholar
  5. Alves, A.L., E.S. Varela, G.V. Moro, and L.N.G. Kirschnik. 2014. Riscos genéticos da produção de híbridos de peixes nativos. Palmas: Embrapa Pesca e Aquicultura.Google Scholar
  6. Australia Productivity Commission. 2004. Assessing environmental regulatory arrangements for aquaculture. Melbourne, VIC: Productivity Commission.Google Scholar
  7. Azevedo-Santos, V.M., O. Rigolin-Sá, and F.M. Pelicice. 2011. Growing, losing or introducing? Cage aquaculture as a vector for the introduction of non-native fish in Furnas Reservoir, Minas Gerais, Brazil. Neotropical Ichthyology 9: 915–919.  https://doi.org/10.1590/S1679-62252011000400024.CrossRefGoogle Scholar
  8. Azevedo-Santos, V.M., F.M. Pelicice, D.P. Lima-Junior, A.L.B. Magalhães, M.L. Orsi, J.R.S. Vitule, and A.A. Agostinho. 2015. How to avoid fish introductions in Brazil: Education and information as alternatives. Natureza & Conservação 13: 123–132.  https://doi.org/10.1016/j.ncon.2015.06.002.CrossRefGoogle Scholar
  9. Azevedo-Santos, V.M., P.M. Fearnside, C.S. Oliveira, A.A. Padial, F.M. Pelicice, D.P. Lima-Junior, D. Simberloff, T.E. Lovejoy, et al. 2017. Removing the abyss between conservation science and policy decision in Brazil. Biodiversity and Conservation 26: 1745–1752.  https://doi.org/10.1007/s10531-017-1316-x.CrossRefGoogle Scholar
  10. Braga, R.R., L. Gómez-Aparicio, T. Heger, J.R.S. Vitule, and J.M. Jeschke. 2017. Structuring evidence for invasional meltdown: Broad support but with biased and gaps. Biological Invasions.  https://doi.org/10.1007/s10530-017-1582-2.Google Scholar
  11. Brengballe, J. 2015. A guide to recirculation aquaculture. http://www.fao.org/3/a-i4626e.pdf. Accessed 26 Oct 2017.
  12. Britton, J.R., and M.L. Orsi. 2012. Non-native fish in aquaculture and sport fishing in Brazil: Economic benefits versus risks to fish diversity in the upper River Paraná Basin. Reviews in Fish Biology and Fisheries 22: 555–565.  https://doi.org/10.1007/s11160-012-9254-x.CrossRefGoogle Scholar
  13. Bueno, G.W., A. Ostrensky, C. Canzi, F.T. de Matos, and R. Roubach. 2015. Implementation of aquaculture parks in Federal Government waters in Brazil. Reviews in Aquaculture 7: 1–12.  https://doi.org/10.1111/raq.12045.CrossRefGoogle Scholar
  14. Bush, S.R., B. Belton, D. Hall, P. Vandergeest, F.J. Murray, S. Ponte, P. Oosterveer, M.S. Islan, et al. 2013. Certify sustainable aquaculture? Science 341: 1067–1068.  https://doi.org/10.1126/science.1237314.CrossRefGoogle Scholar
  15. Cabello, F.C. 2006. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for environment. Environmental Microbiology 8: 1137–1144.CrossRefGoogle Scholar
  16. Canonico, G.C., A. Arthington, J.K. McCrary, and M.L. Thieme. 2005. The effects of introduced tilapias on native biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 463–483.  https://doi.org/10.1002/aqc.699.CrossRefGoogle Scholar
  17. Casal, C.M.V. 2006. Global documentation of fish introductions: The growing crisis and recommendations for action. Biological Invasions 8: 3–11.  https://doi.org/10.1007/s10530-005-0231-3.CrossRefGoogle Scholar
  18. Coelho, P.N., and R. Henry. 2017. The small foreigner: New laws will promote the introduction of non-native zooplankton in Brazilian aquatic environments. Acta Limnologica Brasiliensia 29: e7.  https://doi.org/10.1590/s2179-975x0717.CrossRefGoogle Scholar
  19. Colombia, 2015. Resulución 2287 de 2015. Autoridad Nacional de Acuicultura y Pesca:Por la cual se declaran unas especies de peces como domesticadas para el desarrollo de la acuicultura y se dictan otras disposiciones. http://legal.legis.com.co/document?obra=legcol&document=legcol_14790d1a48434c769e252071249e97d4.
  20. Córdova-Tapia, F., M. Contreras, and L. Zambrano. 2015. Trophic niche overlap between native and non-native fishes. Hydrobiologia 746: 291–301.CrossRefGoogle Scholar
  21. Cucherousset, J., and J.D. Olden. 2011. Ecological impacts of non-native freshwater fishes. Fisheries 36: 215–230.  https://doi.org/10.1080/03632415.2011.574578.CrossRefGoogle Scholar
  22. Daga, V.S., F. Skóra, A.A. Padial, V. Abilhoa, E.A. Gubiani, and J.R.S. Vitule. 2015. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: Comparing the roles of introduced species and their vectors. Hydrobiologia 746: 327–347.  https://doi.org/10.1007/s10750-014-2032-0.CrossRefGoogle Scholar
  23. David, G.S., E.D. Carvalho, D. Lemos, A.N. Silveira, and M. Dall’Aglio-Sobrinho. 2015. Ecological carrying capacity for intensive tilapia (Oreochromis niloticus) cage aquaculture in a large hydroelectrical reservoir in Southeastern Brazil. Aquaculture Engineering 66: 30–40.CrossRefGoogle Scholar
  24. Deines, A.M., M.E. Wittmann, J.M. Deines, and D.M. Lodge. 2016. Tradeoffs among ecosystem services associated with global tilapia introductions. Reviews in Fisheries Science & Aquaculture 24: 178–191.  https://doi.org/10.1080/23308249.2015.1115466.CrossRefGoogle Scholar
  25. Diana, J.S. 2009. Aquaculture production and biodiversity conservation. BioScience 59: 27–38.  https://doi.org/10.1525/bio.2009.59.1.7.CrossRefGoogle Scholar
  26. Di Marco, M., S.H.M. Butchart, P. Visconti, G.M. Buchanan, G.F. Ficetola, and C. Rondinini. 2015. Synergies and trade-offs in achieving global biodiversity targets. Conservation Biology 30: 189–195.  https://doi.org/10.1111/cobi.12559.CrossRefGoogle Scholar
  27. EPA. 2017. Guide to developing and Environmental Management System—Plan. http://faostat3.fao.org/. Accessed 26 Oct 2017.
  28. FAO. 2016. The state of world fisheries and aquaculture: Contributing to food security and nutrition for all. Rome: FAO.Google Scholar
  29. Fearnside, P.M. 2016. Brazilian politics threaten environmental policies. Science 353: 746–748.  https://doi.org/10.1126/science.aag0254.CrossRefGoogle Scholar
  30. Figueredo, C.C., and A. Giani. 2005. Ecological interaction between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil). Freshwater Biology 50: 1391–1403.  https://doi.org/10.1111/j.1365-2427.2005.01407.x.CrossRefGoogle Scholar
  31. Forneck, S.C., F.M. Dutra, C.E. Zacarkim, and A.M. Cunico. 2016. Invasion risks by non-native freshwater fishes due to aquaculture activity in a neotropical stream. Hydrobiologia 773: 193–205.CrossRefGoogle Scholar
  32. Frehse, F.A., R.R. Braga, G.A. Nocera, and J.R.S. Vitule. 2016. Non-native species and invasion biology in a megadiverse country: Scientometric analysis and ecological interactions in Brazil. Biological Invasions 18: 3713–3725.  https://doi.org/10.1007/s10530-016-1260-9.CrossRefGoogle Scholar
  33. Garcia, F., J.M. Kimpara, W.C. Valenti, and L.A. Ambrosio. 2014. Emergy assessment of tilapia cage farming in a hydroelectric reservoir. Ecological Engineering 68: 72–79.CrossRefGoogle Scholar
  34. Governo de Mato Grosso. 2017. Diário Oficial do Estado de Mato Grosso: Decreto 1190/2017. https://www.legisweb.com.br/legislacao/?id=350177. Accessed 26 Oct 2017.
  35. Governo de Tocantins. 2016. Alteração da Resolução COEMA/TO No 27, de 22 de Novembro de 2011. https://www.legisweb.com.br/legislacao/?id=172017. Accessed 26 Oct 2017.
  36. Hallwass, G., P.L. Lopes, A.A. Juras, and R.A.M. Silvano. 2013. Fishers’ knowledge identifies environmental changes and fish abundance trends in impounded tropical rivers. Ecological Applications 23: 392–407.  https://doi.org/10.1890/12-0429.1.CrossRefGoogle Scholar
  37. Hashimoto, D.T., J.A. Senhorini, F. Foresti, and F. Porto-Foresti. 2012. Interspecific fish hybrids in Brazil: Management of genetic resources for sustainable use. Reviews in Aquaculture 4: 108–118.  https://doi.org/10.1111/j.1753-5131.2012.01067.x.CrossRefGoogle Scholar
  38. Havel, J.E., C.E. Lee, and J. Vander Zanden. 2005. Do reservoirs facilitate invasions into landscapes? BioScience 55: 518–525.CrossRefGoogle Scholar
  39. IBGE. 2016. Produção da pecuária municipal. Rio de Janeiro: IBGE.Google Scholar
  40. Jarić, L., and G. Cvijanović. 2012. The tens rule in invasion biology: Measure of a true impact or our lack of knowledge and understanding. Environmental Management 50: 979–981.CrossRefGoogle Scholar
  41. Jensen, Ø., T. Dempster, E.B. Thorstad, I. Uglem, and A. Fredheim. 2010. Escapes of fishes from Norwegian sea-cage aquaculture: Cause, consequences and prevention. Aquaculture Environment Interactions 1: 71–83.  https://doi.org/10.3354/aei00008.CrossRefGoogle Scholar
  42. Jeschke, J.M., L. Gómez Aparicio, S. Haider, T. Heger, C.J. Lortie, P. Pyšek, and D.L. Strayer. 2012. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14: 1–20.CrossRefGoogle Scholar
  43. Johnson, P.T., J.D. Olden, and M.J. Vander Zanden. 2008. Dam invaders: Impoundments facilitate biological invasions into freshwaters. Frontiers in Ecology and the Environment 6: 357–363.  https://doi.org/10.1890/070156.CrossRefGoogle Scholar
  44. Jones, A.C., A. Mead, M.J. Kaiser, M.C.V. Austen, A.W. Adrian, N.A. Auchterlonie, K.D. Black, L.C. Blow, et al. 2015. Prioritization of knowledge needs for sustainable aquaculture: A national and global perspective. Fish and Fisheries 16: 668–683.  https://doi.org/10.1111/faf.12086.CrossRefGoogle Scholar
  45. Joppa, L.N., P. Visconti, C.N. Jenkins, and S.L. Pimm. 2013. Achieving the convention on biological diversity’s goals for plant conservation. Science 341: 1100–1103.  https://doi.org/10.1126/science.1241706.CrossRefGoogle Scholar
  46. Klinger, D., and R. Naylor. 2012. Searching for solutions in aquaculture: Charting a sustainable course. Annual Review of Environment and Resources 37: 247–276.  https://doi.org/10.1146/annurev-environ-021111-161531.CrossRefGoogle Scholar
  47. Liew, J.H., H.H. Tan, and D.C.J. Yeo. 2016. Dammed rivers: Impoundments facilitate fish invasions. Freshwater Biology 61: 1421–1429. https://doi.org/10.1111/fwb.12781.Google Scholar
  48. Lima, L.B., F.J.M. Oliveira, H.C. Giacomini, and D.P. Lima-Junior. 2016. Expansion of aquaculture parks and the increasing risk of non-native species invasions in Brazil. Reviews in Aquaculture.  https://doi.org/10.1111/raq.12150.Google Scholar
  49. Lima-Junior, D.P., L.B. Lima, J.R.S. Vitule, M.L. Orsi, and V.M. Azevedo-Santos. 2014. Modificação das diretrizes do CONAMA no 413/2009 sobre o licenciamento ambiental da aquicultura: retirando os “obstáculos normativos” para a criação de espécies não nativas em águas continentais brasileiras. Boletim da Associação Brasileira de Limnologia 40: 3–11.Google Scholar
  50. Lin, Y., Z. Gao, and A. Zhan. 2013. Introduction and use of non-native species for aquaculture in China: Status, risks and management solutions. Reviews in Aquaculture 7: 28–58.  https://doi.org/10.1111/raq.12052.CrossRefGoogle Scholar
  51. Mace, G.M., K. Norris, and A.H. Fitter. 2012. Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology & Evolution 27: 19–25.  https://doi.org/10.1016/j.tree.2011.08.006.CrossRefGoogle Scholar
  52. Magalhães, A.L.B., and C.M. Jacobi. 2013. Asian aquarium fishes in a Neotropical biodiversity hotspot: Impeding establishment, spread and impacts. Biological Invasions 15: 2157–2163.  https://doi.org/10.1007/s10530-013-0443-x.CrossRefGoogle Scholar
  53. Magalhães, A.L.B., and C.M. Jacobi. 2017. Colorful invasion in permissive Neotropical ecosystems: Establishment of ornamental non-native poeciliids of the genera Poecilia/Xiphophorus (Cyprinodontiformes: Poeciliidae) and management alternatives. Neotropical Ichthyology 15: e160094.  https://doi.org/10.1590/1982-0224-20160094.Google Scholar
  54. MFA. 2012. Instrução normativa interministerial no1 de 3 de Janeiro de 2012. Diário Oficial da União 3: 26–42.Google Scholar
  55. Montanhini Neto, R., H.R. Nocko, and A. Ostrensky. 2015. Environmental characterization and impacts of fish farming in the cascade reservoirs of the Paranapanema river, Brazil. Aquaculture Environment Interactions 6: 255–272.CrossRefGoogle Scholar
  56. Moura, R.S.T., W.C. Valenti, and G.G. Henry-Silva. 2016. Sustainability of Nile tilapia net-cage culture in a reservoir in a semi-arid region. Ecological Indicators 66: 574–582.  https://doi.org/10.1016/j.ecolind.2016.01.052.CrossRefGoogle Scholar
  57. Naylor, R.L., R.J. Goldburg, and J.H. Primavera. 2000. Effect of aquaculture on world fish supplies. Nature 405: 1017–1024.  https://doi.org/10.1038/35016500.CrossRefGoogle Scholar
  58. Naylor, R.L., S.L. Williams, and D.R. Strong. 2001. Aquaculture—a gateway for exotic species. Science 294: 1655–1656.  https://doi.org/10.1126/science.1064875.CrossRefGoogle Scholar
  59. Naylor, R., K. Hindar, F. Fleming, R. Goldburg, S. Williams, J. Volpe, F. Whoriskey, et al. 2005. Fugitive salmon: Assessing the risks of escaped fish from net-pen aquaculture. BioScience 55: 427–437.CrossRefGoogle Scholar
  60. O’Bryen, P.J., and C.S. Lee. 2003. Management of aquaculture effluents workshop discussion summary. Aquaculture 226: 227–242.  https://doi.org/10.1016/S0044-8486(03)00480-0.CrossRefGoogle Scholar
  61. Occhi, T.V.T., L.A. Faria, and J.R.S. Vitule. 2017. Native or non-native? That is the question: A complementary discussion to Saint-Paul (2017). Acta of Fisheries and Aquatic Resources 5: xii–xvi.Google Scholar
  62. Ochoa-Ochoa, L.M., O.A. Flores-Villela, C.A. Ríos-Muñoz, J. Arroyo-Cabrales, and M. Martínez-Gordillo. 2017. Mexico’s ambiguous invasive species plan. Science 355: 1033.  https://doi.org/10.1126/science.aam9400.CrossRefGoogle Scholar
  63. Ortega, J.C.G., H.F. Júlio Jr., L.C. Gomes, and A.A. Agostinho. 2015. Fish farming as the main driver of fish introductions in Neotropical reservoirs. Hydrobiologia 746: 147–158.  https://doi.org/10.1007/s10750-014-2025-z.CrossRefGoogle Scholar
  64. Padial, A.A., A.A. Agostinho, V.M. Azevedo-Santos, F.A. Frehse, D.P. Lima-Junior, A.L.B. Magalhães, R.P. Mormul, F.M. Pelicice, et al. 2017. The “Tilapia Law” encouraging non-native fish threatens Amazonian river basins. Biodiversity and Conservation 26: 243–246.  https://doi.org/10.1007/s10531-017-1316-x.CrossRefGoogle Scholar
  65. Pant, J., B.K. Barman, K. Murshed-E-Jahan, B. Belton, and M. Beveridge. 2014. Can aquaculture benefit the extreme poor? A case study of landless and socially marginalized Adivasi (ethnic) communities in Bangladesh. Aquaculture 418–419: 1–10.CrossRefGoogle Scholar
  66. Pedroza-Filho, M.X., R.M. Barroso, R.M. Valadão-Flores, and A.P. Silva. 2014a. Diagnóstico da cadeia produtiva da piscicultura no estado de Tocantins. Palmas: EMBRAPA Pesca e Aquicultura.Google Scholar
  67. Pedroza-Filho, M.X., R.M. Barroso, and R.M. Valadão Flores. 2014b. Effects of non-tariff barriers on Brazilian fisheries exports to the European Union. Agroalimentaria 20: 35–52.Google Scholar
  68. Pedroza-Filho, M.X., R.M. Valadão-Flores, A.O. Rodrigues, and F.P. Rezende. 2015. Análise comparativa de resultados econômicos dos polos piscicultores no segundo trimestre de 2015. Palmas: EMBRAPA Pesca e Aquicultura.Google Scholar
  69. Pelicice, F.M., J.R.S. Vitule, D.P. Lima-Junior, M.L. Orsi, and A.A. Agostinho. 2014. Serious new threat to Brazilian freshwater ecosystems: The naturalization of nonnative fish by decree. Conservation Letters 7: 55–60.  https://doi.org/10.1111/conl.12029.CrossRefGoogle Scholar
  70. Pelicice, F.M., V.M. Azevedo-Santos, J.R.S. Vitule, M.L. Orsi, D.P. Lima-Junior, A.L.B. Magalhães, P.S. Pompeu, M. Petrere-Junior, et al. 2017. Neotropical freshwater fishes imperilled by unsustainable policies. Fish and Fisheries 18: 1119–1133.CrossRefGoogle Scholar
  71. Petesse, M.L., and M. Petrere Jr. 2012. Tendency towards homogenization in fish assemblages in the cascade reservoir system of the Tietê river basin, Brazil. Ecological Engineering 48: 109–116.  https://doi.org/10.1016/j.ecoleng.2011.06.033.CrossRefGoogle Scholar
  72. Pyšek, P., S. Bacher, M. Chytrý, V. Vojtěch, J. Wild, L. Celesti-Grapow, N. Gassó, M. Kenis, et al. 2010. Constrasting patterns in the invasion of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Global Ecology and Biogeography 19: 317–331.CrossRefGoogle Scholar
  73. Rosa, R.S., A.C. Aguiar, I.G. Boëchat, and B. Gücker. 2013. Impacts of fish farm pollution on ecosystem structure and function of tropical headwater streams. Environmental Pollution 174: 204–213.CrossRefGoogle Scholar
  74. Saint-Paul, D. 2017. Native fish species boosting Brazilian’s aquaculture development. Acta of Fisheries and Aquatic Resources 5: 1–9.Google Scholar
  75. Sampaio, F.D.F., C.A. Freire, T.V. Sampaio, J.R.S. Vitule, and F.F. Luís. 2015. The precautionary principle and its approach to risk analysis and quarantine related to the trade of marine ornamental fish in Brazil. Marine Policy 51: 163–168.  https://doi.org/10.1016/j.marpol.2014.08.003.CrossRefGoogle Scholar
  76. São Paulo. 2016. Instituto de Pesca de São Paulo – Portaria: Dispõe sobre a lista de espécies aquícolas alóctones, exóticas e híbridos cultiváveis no Estado de São Paulo.Google Scholar
  77. Scarano, F., A. Guimarães, and J.M. Silva. 2012. Rio + 20: Lead by example. Nature 486: 25–26.  https://doi.org/10.1038/486025a.CrossRefGoogle Scholar
  78. Sepúlveda, M., I. Arismendi, D. Soto, F. Jara, and F. Faria. 2013. Escaped farmed salmon and trout in Chile: Incidence, impacts and the need for an ecosystem view. Aquaculture Environment Interactions 4: 273–283.  https://doi.org/10.3354/aei00089.CrossRefGoogle Scholar
  79. Simberloff, D., and B. Von Holle. 1999. Positive interactions on nonindigenous species: Invasional meltdown? Biological Invasions 1: 21–32.  https://doi.org/10.1023/A:1010086329619.CrossRefGoogle Scholar
  80. Starling, F., X. Lazzaro, C. Cavalcanti, and R. Moreira. 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: Evidence from a fish kill. Freshwater Biology 47: 2443–2452.  https://doi.org/10.1046/j.1365-2427.2002.01013.x.CrossRefGoogle Scholar
  81. Thorvaldsen, T., I.M. Holmen, and H.K. Moe. 2015. The escape of fish from Norwegian fish farms: Causes, risks and influence of organisational aspects. Marine Policy 55: 33–38.  https://doi.org/10.1016/j.marpol.2015.01.008.CrossRefGoogle Scholar
  82. Titensor, D., M. Walpole, S.L.L. Hill, D.G. Boyce, G.L. Britten, N.D. Burgess, S.H.M. Butchart, P.W. Leadley, et al. 2014. A mid-tern analysis of progress toward international biodiversity targets. Science 346: 241–244.  https://doi.org/10.1126/science.1257484.CrossRefGoogle Scholar
  83. Tollefson, J. 2016. Political upheaval threatens Brazil’s environmental protections. Nature 539: 147–148.  https://doi.org/10.1038/539147a.CrossRefGoogle Scholar
  84. Troell, M., R.L. Naylor, M. Metian, M. Beveridge, P.H. Tyedmers, C. Folke, K.W. Arrow, S. Barret, et al. 2014. Does aquaculture add resilience to global food system? Proceedings of the National Academy of Sciences 111: 13257–13263.  https://doi.org/10.1073/pnas.1404067111.CrossRefGoogle Scholar
  85. Valadão Flores, R.M.V., and M.X. Pedroza Filho. 2014. Is the internal market able to accommodate the strong growth projected for Brazilian Aquaculture? Journal of Agricultural Science and Technology 4: 407–417.Google Scholar
  86. Valladão, G.M.R., S. Umeda, and F. Pilarski. 2016. South American fish for continental aquaculture. Reviews in Aquaculture.  https://doi.org/10.1111/raq.12164.Google Scholar
  87. Vitule, J.R.S., C.A. Freire, and D. Simberloff. 2009. Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries 10: 98–108.  https://doi.org/10.1111/j.1467-2979.2008.00312.x.CrossRefGoogle Scholar
  88. Vitule, J.R.S., D.P. Lima-Junior, F.M. Pelicice, M.L. Orsi, and A.A. Agostinho. 2012. Ecology: Preserve Brazil’s aquatic biodiversity. Nature 485: 309.  https://doi.org/10.1038/485309c.CrossRefGoogle Scholar
  89. Vitule, J.R.S., F.D.F. Sampaio, and A.L.B. Magalhães. 2014. Aquarium trade: Monitor Brazil’s fish sampling closely. Nature 513: 315.  https://doi.org/10.1038/513315d.CrossRefGoogle Scholar
  90. Vitule, J.R.S., V.M. Azevedo-Santos, V.S. Daga, et al. 2015. Brazil’s drought: Protect biodiversity. Science 347: 1427–1428.  https://doi.org/10.1126/science.347.6229.1427-b.CrossRefGoogle Scholar
  91. Watson, R.A., D. Zeller, and D. Pauly. 2014. Primary productivity demands of global fishing fleets. Fish and Fisheries 15: 231–241.  https://doi.org/10.1111/faf.12013.CrossRefGoogle Scholar
  92. Williamson, M., and A. Fitter. 1996. The varying success of invaders. Ecology 77: 1661–1666.CrossRefGoogle Scholar
  93. Zhang, X., X. Mei, and R.D. Gulati. 2017. Effects of omnivorous tilapia on water turbidity and primary production dynamics in shallow lakes: Implication for ecosystem management. Review in Fish Biology and Fisheries 27: 245–254.  https://doi.org/10.1007/s11160-016-9458-6.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2017

Authors and Affiliations

  • Dilermando Pereira Lima Junior
    • 1
  • André Lincoln Barroso Magalhães
    • 2
  • Fernando Mayer Pelicice
    • 3
  • Jean Ricardo Simões Vitule
    • 4
  • Valter M. Azevedo-Santos
    • 5
  • Mário Luís Orsi
    • 6
  • Daniel Simberloff
    • 7
  • Angelo Antônio Agostinho
    • 8
  1. 1.Aquatic Ecosystems Ecology and Conservation Laboratory– Universidade Federal de Mato GrossoPontal do AraguaiaBrazil
  2. 2.Graduate Program in Technologies for the Sustainable Development – Universidade Federal de São João Del ReiOuro BrancoBrazil
  3. 3.Núcleo de Estudos AmbientaisUniversidade Federal de TocantinsPorto NacionalBrazil
  4. 4.Ecology and Conservation Laboratory, Environmental Engineering DepartmentTechnology Sector – Universidade Federal do ParanáCuritibaBrazil
  5. 5.Departamento de ZoologiaUniversidade Estadual Paulista “Júlio de Mesquita Filho”BotucatuBrazil
  6. 6.Fish Ecology and Biological Invasions LaboratoryUniversidade Estadual de LondrinaLondrinaBrazil
  7. 7.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA
  8. 8.Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (NUPELIA)Universidade Estadual de MaringáMaringáBrazil

Personalised recommendations