Ambio

, Volume 46, Issue 6, pp 630–643 | Cite as

Climate change and national crop wild relative conservation planning

  • Jade Phillips
  • Joana Magos Brehm
  • Bob van Oort
  • Åsmund Asdal
  • Morten Rasmussen
  • Nigel Maxted
Report

Abstract

Climate change is likely to be one of the most important factors affecting our future food security. To mitigate negative impacts, we will require our crops to be more genetically diverse. Such diversity is available in crop wild relatives (CWRs), the wild taxa relatively closely related to crops and from which diverse traits can be transferred to the crop. Conservation of such genetic resources resides within the nation where they are found; therefore, national-level conservation recommendations are fundamental to global food security. We investigate the potential impact of climate change on CWR richness in Norway. The consequences of a 1.5 and 3.0 °C temperature rise were studied for the years 2030, 2050, 2070, 2080 and then compared to the present climate. The results indicate a pattern of shifting CWR richness from the south to the north, with increases in taxa turnover and in the numbers of threatened taxa. Recommendations for in situ and ex situ conservation actions over the short and long term for the priority CWRs in Norway are presented. The methods and recommendations developed here can be applied within other nations and at regional and global levels to improve the effectiveness of conservation actions and help ensure global food security.

Keywords

Agriculture Ex situ conservation Food security Genetic diversity In situ conservation Plant genetic resources 

Supplementary material

13280_2017_905_MOESM1_ESM.pdf (884 kb)
Supplementary material 1 (DOC 9111 kb)

References

  1. Anderson, R.P., M. Dudík, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.CrossRefGoogle Scholar
  2. Araújo, M.B., M. Cabeza, W. Thuiller, L. Hannah, and P.H. Williams. 2004. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10: 1618–1626.CrossRefGoogle Scholar
  3. Araujo, M.B., and A. Guisan. 2006. Five (or so) challenges for species distribution modelling. Journal of Biogeography 3: 1677–1688.CrossRefGoogle Scholar
  4. Arctic Climate Impact Assessment. 2004. Impacts of a warming Arctic. Cambridge, UK: Cambridge University Press.Google Scholar
  5. Bentsen, M., I. Bethke, J. Debernard, T. Iversen, A. Kirkevåg, Ø. Seland, H. Drange, C. Roelandt, et al. 2013. The Norwegian earth system model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development 6: 687–720.CrossRefGoogle Scholar
  6. Buckler, E.S., J.M. Thornsberry, and S. Kresovich. 2001. Molecular diversity, structure and domestication of grasses. Genetics Research 3: 213–218.Google Scholar
  7. Cummins, I.N., and H.S. Aldwinckle. 1979. Breeding tree crops. In Biology and breeding resistance to arthropods and pathogens in agricultural plants, ed. M.K. Harris, 528–545. College Station: Texas Agricultural Experiment Station, Texas A and M University.Google Scholar
  8. Dormann, C.F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J.R.G. Marquéz, B. Gruber, et al. 2013. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 3: 27–46.CrossRefGoogle Scholar
  9. Elith, J., S.J. Phillips, T. Hastie, M. Dudik, Y.E. Chee, and C.J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 42–57.CrossRefGoogle Scholar
  10. ESRI. 2011. ArcGIS desktop release 10.2.Google Scholar
  11. FAO. 2009. How to feed the world in 2050, Rome.Google Scholar
  12. FAO. 2015. Coping with climate change-the roles of genetic resources for food and agriculture, Rome.Google Scholar
  13. Foden, W.B., S.H. Butchart, S.N. Stuart, J. Vié, H.R. Akçakaya, A. Angulo, L.M. DeVantier, A. Gutsche, et al. 2013. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8: e65427.CrossRefGoogle Scholar
  14. Foden, W.B., G.M. Mace, J. Vié, A. Angulo, S.H. Butchart, L. DeVantier, H.T. Dublin, A. Gutsche, et al. 2009. Species susceptibility to climate change impacts. Wildlife in a changing world—An analysis of the 2008 IUCN Red List of Threatened Species, 77.Google Scholar
  15. Foden, W.B., and B.E. Young. 2016. IUCN SSC guidelines for assessing species’ vulnerability to climate change.Google Scholar
  16. Franklin, J.F., F.J. Swanson, M.E. Harmon, D.A. Perry, T.A. Spies, V.H. Dale, A. McKee, W.K. Ferrell, et al. 1992. Effects of global climatic change on forests in northwestern North America. In Global warming and biodiversity, ed. R.L. Peters, and T.E. Lovejoy, 244–257. New Haven: Yale University Press.Google Scholar
  17. GBIF. 2013. Biodiversity occurrence data available through the GBIF Data Portal. (www.gbif.org).
  18. Gent, P.R., G. Danabasoglu, L.J. Donner, M.M. Holland, E.C. Hunke, S.R. Jayne, D.M. Lawrence, R.B. Neale, et al. 2011. The community climate system model version 4. Journal of Climate 24: 4973–4991.CrossRefGoogle Scholar
  19. Halpin, P.N. 1997. Global climate change and natural-area protection: management responses and research directions. Ecological Applications 7: 828–843.CrossRefGoogle Scholar
  20. Hampe, A., and R.J. Petit. 2005. Conserving biodiversity under climate change: The rear edge matters. Ecology Letters 8: 461–467.CrossRefGoogle Scholar
  21. Hanssen-Bauer, I., H. Drange, E.J. Førland, L.A. Roald, K.Y. Børsheim, H. Hisdal, D. Lawrence, A. Nesje, S. Sandven, A. Sorteberg, S. Sundby, K. Vasskog, and B. Ådlandsvik. 2009. Klima i Norge 2100. Bakgrunnsmateriale til NOU Klimatilplassing., Norsk klimasenter, Oslo.Google Scholar
  22. Heller, N.E., and E.S. Zavaleta. 2009. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological Conservation 142: 14–32.CrossRefGoogle Scholar
  23. Henningsson, S.S., and T. Alerstam. 2005. Patterns and determinants of shorebird species richness in the circumpolar Arctic. Journal of Biogeography 32: 383–396.CrossRefGoogle Scholar
  24. Higgins, S.I., S. Lavorel, and E. Revilla. 2003. Estimating plant migration rates under habitat loss and fragmentation. Oikos 101: 354–366.CrossRefGoogle Scholar
  25. Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones, and A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.CrossRefGoogle Scholar
  26. Hijmans, R., L. Guarino, and P. Mathur. 2004. DIVA-GIS. Version 7.5. A geographic information system for the analysis of species distribution data.Google Scholar
  27. Hof, A.R., R. Jansson, and C. Nilsson. 2012. Future climate change will favour non-specialist mammals in the (sub) arctic. PLoS ONE 7: e52574.CrossRefGoogle Scholar
  28. Huntley, B., Y.C. Collingham, S.G. Willis, and R.E. Green. 2008. Potential impacts of climatic change on European breeding birds. PLoS ONE 3: e1439.CrossRefGoogle Scholar
  29. IBM Corp. 2013. IBM SPSS statistics for windows. 22.0.Google Scholar
  30. Iriondo, J.M., N. Maxted, S.P. Kell, B.V. Ford-Lloyd, C. Lara-Romano, J. Labokas, and J. Magos Brehm. 2012. Quality standards for genetic reserve conservation of crop wild relatives. In Agrobiodiversity conservation: securing the diversity of crop wild relatives and landraces, ed. N. Maxted, M.E. Dulloo, B.V. Ford-Lloyd, L. Frese, J.M. Iriondo, and M.A.A. Pinheiro de Carvalho. Wallingford: CABI.Google Scholar
  31. IUCN. 2001. IUCN Red List categories and criteria: Version 3.1.Google Scholar
  32. Jarvis, S., H. Fielder, J. Hopkins, N. Maxted, and S. Smart. 2015. Distribution of crop wild relatives of conservation priority in the UK landscape. Biological Conservation 191: 444–451.CrossRefGoogle Scholar
  33. Jarvis, A., A. Lane, and R.J. Hijmans. 2008. The effect of climate change on crop wild relatives. Agriculture, Ecosystems & Environment 126: 13–23.CrossRefGoogle Scholar
  34. Jump, A.S., and J. Penuelas. 2005. Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters 8: 1010–1020.CrossRefGoogle Scholar
  35. Kålås, J.A., A. Viken, and T. Bakken. 2006. Norwegian Red List.Google Scholar
  36. Lakew, B., J. Eglinton, R.J. Henry, M. Baum, S. Grando, and S. Ceccarelli. 2011. The potential contribution of wild barley (Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp. vulgare). Field Crops Research 120: 161–168.CrossRefGoogle Scholar
  37. Lesica, P., and F.W. Allendorf. 1995. When are peripheral populations valuable for conservation? Conservation Biology 9: 753–760.CrossRefGoogle Scholar
  38. Loiselle, B.A., P.M. Jørgensen, T. Consiglio, I. Jiménez, J.G. Blake, L.G. Lohmann, and O.M. Montiel. 2008. Predicting species distributions from herbarium collections: Does climate bias in collection sampling influence model outcomes? Journal of Biogeography 35: 105–116.Google Scholar
  39. Lovejoy, T.E. 2005. Conservation with a changing climate. In Climate change and biodiversity, ed. T.E. Lovejoy, and L. Hannah, 325–328. New Haven: Yale University Press.Google Scholar
  40. Maldonado, C., C.I. Molina, A. Zizka, C. Persson, C.M. Taylor, J. Albán, E. Chilquillo, N. Rønsted, et al. 2015. Estimating species diversity and distribution in the era of big data: To what extent can we trust public databases? Global Ecology and Biogeography 24: 973–984.CrossRefGoogle Scholar
  41. Maxted, N., and S.P. Kell. 2009. Establishment of a global network for the in situ conservation of crop wild relatives: Status and needs. Rome, Italy: Food and Agriculture Organisation.Google Scholar
  42. McCarthy, J.J., O.F. Canziani, N.A. Leary, D.J. Dokken, and K.S. White. 2001. Climate change 2001: Impacts, adaptation, and vulnerability. Contribution of working group II to the intergovernmental panel on climate change third assessment report. Cambridge, UK: Cambridge University Press.Google Scholar
  43. Midgley, G., L. Hannah, D. Millar, W. Thuiller, and A. Booth. 2003. Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biological Conservation 112: 87–97.CrossRefGoogle Scholar
  44. Müller, C., and R.D. Robertson. 2014. Projecting future crop productivity for global economic modelling. Agricultural Economics 45: 37–50.CrossRefGoogle Scholar
  45. Nekola, J.C. 1999. Paleorefugia and neorefugia: The influence of colonization history on community pattern and process. Ecology 80: 2459–2473.CrossRefGoogle Scholar
  46. Nelson, D.R., W.N. Adger, and K. Brown. 2007. Adaptation to environmental change: Contributions of a resilience framework. Annual Review of Environment and Resources 32: 395.CrossRefGoogle Scholar
  47. Norwegian Ministry for Agriculture and Food. 2008. Country report on the state of plant genetic resources for food and agriculture in Norway, Oslo, Norway.Google Scholar
  48. Olesen, J.E., and M. Bindi. 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy 16: 239–262.CrossRefGoogle Scholar
  49. Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.CrossRefGoogle Scholar
  50. Parra-Quijano, M., F. López, J.M. Iriondo, E. Torres, and A. Molina. 2016. CAPFITOGEN tools user manual version 2.0.Google Scholar
  51. Peters, R.L., and J. Myers. 1991. Preserving biodiversity in a changing climate. Issues in Science and Technology 8: 2.Google Scholar
  52. Phillips, S.J., R.P. Anderson, and R.E. Schapire. 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling 190: 231–259.CrossRefGoogle Scholar
  53. Phillips, J., Å. Asdal, J. Magos Brehm, M. Rasmussen, and N. Maxted. 2016. In situ and ex situ diversity analysis of priority crop wild relatives in Norway. Diversity and Distributions 22: 1112–1126.CrossRefGoogle Scholar
  54. Phillips, S.J., M. Dudík, and R.E. Schapire. 2004. A maximum entropy approach to species distribution modelling. In Proceedings of the twenty-first international conference on Machine learning, 655–662, Banff, Canada.Google Scholar
  55. Pittock, A.B., and R.N. Jones. 2000. Adaptation to what and why? Environmental Monitoring and Assessment 61: 9–35.CrossRefGoogle Scholar
  56. Prather, M., G. Flato, P. Friedlingstein, C. Jones, J.-F. Lamarque, H. Liao, and P. Rasch. 2013. IPCC 2013: Annex II: Climate system scenario tables. In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, ed. T.F. Stocker, D. Quin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, et al., Cambridge: Cambridge University Press and New York, NY.Google Scholar
  57. Ramirez-Villegas, J., C. Khoury, A. Jarvis, D.G. Debouck, and L. Guarino. 2010. A gap analysis methodology for collecting crop genepools: A case study with phaseolus beans. PLoS ONE 5: e13497.CrossRefGoogle Scholar
  58. Rocchini, D., J. Hortal, S. Lengyel, J.M. Lobo, A. Jimenez-Valverde, C. Ricotta, G. Bacaro, and A. Chiarucci. 2011. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance. Progress in Physical Geography 35: 211–226.CrossRefGoogle Scholar
  59. Rogelj, J., M. Meinshausen, and R. Knutti. 2012. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change 2: 248–253.CrossRefGoogle Scholar
  60. Rosenzweig, C., J. Elliott, D. Deryng, A.C. Ruane, C. Muller, A. Arneth, K.J. Boote, C. Folberth, et al. 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America 111: 3268–3273.CrossRefGoogle Scholar
  61. Ruete, A. 2015. Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps. Biodiversity Data Journal 3: e5361.CrossRefGoogle Scholar
  62. Sætersdal, M., H. Birks, and S. Peglar. 1998. Predicting changes in Fennoscandian vascular-plant species richness as a result of future climatic change. Journal of Biogeography 25: 111–112.CrossRefGoogle Scholar
  63. Solomon, S. 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge, UK: Cambridge University Press.Google Scholar
  64. Stafford Smith, M., L. Horrocks, A. Harvey, and C. Hamilton. 2011. Rethinking adaptation for a 4 degrees C world. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences 369: 196–216.CrossRefGoogle Scholar
  65. Tanksley, S.D., and S.R. McCouch. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.CrossRefGoogle Scholar
  66. Thomas, C.D., P.K. Gillingham, R.B. Bradbury, D.B. Roy, B.J. Anderson, J.M. Baxter, N.A. Bourn, H.Q. Crick, et al. 2012. Protected areas facilitate species’ range expansions. Proceedings of the National Academy of Sciences of the United States of America 109: 14063–14068.CrossRefGoogle Scholar
  67. Thuiller, W., C. Alberta, M.B. Araujo, P.M. Berry, M. Cabez, A. Guisane, T. Hicklerf, G.F. Midgley, et al. 2008. Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9: 137–152.CrossRefGoogle Scholar
  68. Thuiller, W., S. Lavorel, M.B. Araújo, M.T. Sykes, and I.C. Prentice. 2005. Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America 102: 8245–8250.CrossRefGoogle Scholar
  69. Tømmervik, H., B. Johansen, I. Tombre, D. Thannheiser, K. Høgda, E. Gaare, and F. Wielgolaski. 2004. Vegetation changes in the Nordic mountain birch forest: the influence of grazing and climate change. Arctic, Antarctic, and Alpine Research 36: 323–332.CrossRefGoogle Scholar
  70. Uleberg, E., I. Hanssen-Bauer, B. van Oort, and S. Dalmannsdottir. 2014. Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation. Climatic Change 122: 27–39.CrossRefGoogle Scholar
  71. UNFCCC. 2015. Synthesis report on the aggregate effect of the intended nationally determined contributions. Paris: United Nations.Google Scholar
  72. UNFCCC. 2016. Report of the conference of the parties on its twenty-first session, held in Paris from 30 November to 13 December 2015. Paris: United Nations.Google Scholar
  73. Vincent, H., J. Wiersema, S. Dobbie, S.P. Kell, H. Fielder, N.P. Castañeda Alvarez, L. Guarino, R. Eastwood, et al. 2013. A prioritised crop wild relative inventory as a first step to help underpin global food security. Biological Conservation 167: 265–275.CrossRefGoogle Scholar
  74. Walker, B., C.S. Holling, S.R. Carpenter, and A. Kinzig. 2004. Resilience, adaptability and transformability in social–ecological systems. Ecology and Society 9: 5.CrossRefGoogle Scholar
  75. Warren, R., J. VanDerWal, J. Price, J. Welbergen, I. Atkinson, J. Ramirez-Villegas, T. Osborn, A. Jarvis, et al. 2013. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change 3: 678–682.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2017

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of BirminghamBirminghamUK
  2. 2.CICERO-Center for International Climate and Environmental ResearchOsloNorway
  3. 3.Nordic Genetic Resource CenterGrimstadNorway
  4. 4.Norwegian Genetic Resource CenterÅsNorway

Personalised recommendations