, Volume 46, Issue 4, pp 492–499 | Cite as

Climate change-induced salinity variation impacts on a stenoecious mangrove species in the Indian Sundarbans

  • Kakoli Banerjee
  • Roberto Cazzolla GattiEmail author
  • Abhijit Mitra


The alterations in the salinity profile are an indirect, but potentially sensitive, indicator for detecting changes in precipitation, evaporation, river run-off, glacier retreat, and ice melt. These changes have a high impact on the growth of coastal plant species, such as mangroves. Here, we present estimates of the variability of salinity and the biomass of a stenoecious mangrove species (Heritiera fomes, commonly referred to as Sundari) in the aquatic subsystem of the lower Gangetic delta based on a dataset from 2004 to 2015. We highlight the impact of salinity alteration on the change in aboveground biomass of this endangered species that, due to different salinity profile in the western and central sectors of the lower Gangetic plain, shows an increase only in the former sector, where the salinity is dropping and low growth in the latter, where the salinity is increasing.


Aboveground biomass Climate change Gangetic plain Glacier melting Heritiera fomes Salinity 



The authors acknowledge the financial support of the project entitled “Vulnerability Assessment and development of adaptation strategies for Climate Change impacts with special reference to coasts and island ecosystems of India (VACCIN)” for undertaking the field works in the remote islands of Indian Sundarbans.

Supplementary material

13280_2016_839_MOESM1_ESM.pdf (47 kb)
Supplementary material 1 (PDF 55 kb)


  1. Antonov, J.I., S. Levitus, and T.P. Boyer. 2002. Steric sea level variations during 1957–1994: Importance of salinity. Journal of Geophysical Research 107: 8013.CrossRefGoogle Scholar
  2. APHA. 2001. Standard methods for the examination of water and waste water, 874 pp. Washington D.C.: American Public Health Association.Google Scholar
  3. Avitabile, V., M. Herold, G. Heuvelink, S.L. Lewis, O.L. Phillips, G.P. Asner, J. Armston, P.S. Ashton, et al. 2016. An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology 22: 1406–1420.CrossRefGoogle Scholar
  4. Banerjee, K. 2013. Decadal change in the surface water salinity profile of Indian Sundarbans: A potential indicator of climate change. Journal of Marine Science Research Development S11: 002. doi: 10.4172/2155-9910.S11-002.Google Scholar
  5. Battipaglia, G., E. Zalloni, S. Castaldi, F. Marzaioli, R. Cazzolla Gatti, B. Lasserre, R. Tognetti, M. Marchetti, and R. Valentini. 2015. Long tree-ring chronologies provide evidence of recent tree growth decrease in a central African tropical forest. PLoS ONE 10: e0120962.CrossRefGoogle Scholar
  6. Bindoff, N.L., J. Willebrand, V. Artale, A. Cazenave, J. Gregory, S. Galev, K. Hanawa, C. Le Quere, et al. 2007. Observations: Oceanic Climate Change and Sea level. In Climate change 2007. The physical science basis. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, 389–393. Cambridge: Cambridge University Press.Google Scholar
  7. Cazzolla Gatti, R. 2016. Freshwater biodiversity: A review of local and global threats. International Journal of Environmental Studies 73: 887–904.CrossRefGoogle Scholar
  8. Cazzolla Gatti, R., S. Castaldi, J.A. Lindsell, D.A. Coomes, M. Marchetti, M. Maesano, A. Di Paola, F. Paparella, et al. 2015. The impact of selective logging and clear cutting on forest structure, tree diversity and above-ground biomass of African tropical forests. Ecological Research 30: 119–132.CrossRefGoogle Scholar
  9. Chakrabarti, P.S. 1998. Changing courses of Ganga, Ganga-Padma river system, West Bengal, India—RS data usage in user orientation, river behavior and control. Journal of River Research Institute 25: 19–40.Google Scholar
  10. Chaudhuri, A.B., and A. Choudhury. 1994. Mangroves of the Sundarbans, India, 247 pp. Gland: IUCN.Google Scholar
  11. Clough, B.F., and K. Scott. 1989. Allometric relationship for estimating above ground biomass in six mangrove species. Forest Ecology and Management 27: 117–127.CrossRefGoogle Scholar
  12. Curry, R., B. Dickson, and I. Yashayaev. 2003. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426: 826–829.CrossRefGoogle Scholar
  13. Daniel, W.W. 1990. Applied nonparametric statistics, 2nd ed., 635 pp. Boston: PWS-Kent.Google Scholar
  14. Hasnain, S.I. 1999. Himalayan glaciers: Hydrology and hydrochemistry, 234 pp. New Delhi: Allied Publ., Ltd.Google Scholar
  15. Hasnain, S.I. 2000. Status of the glacier research in the HKH region, 140 pp. Katmandu: ICIMOD.Google Scholar
  16. Hasnain, S.I. 2002. Himalayan glaciers meltdown: Impact on South Asian Rivers. International Association of Hydrological Sciences (IAHS). 274: 417–423.Google Scholar
  17. Hettmansperger, T.P., and J.W. McKean. 1998. Robust nonparametric statistical methods. Kendall’s Library of Statistics 5, 1st ed., 467 pp. London/New York: Edward Arnold/Wiley.Google Scholar
  18. Holmgren, S. 1994. An environmental assessment of Bay of Bengal region, 257 pp. Madras: BOBP for Swedish Centre for Coastal Development & Management of Aquatic Resources.Google Scholar
  19. Hoque, M.A., M.S.K.A. Sarkar, S.A.K.U. Khan, M.A.H. Moral, and A.K.M. Khurram. 2006. Present status of salinity rise in Sundarbans area and its effect on Sundari (Heritiera fomes) species. Research Journal of Agriculture and Biological Science 2: 115–121.Google Scholar
  20. Karim, A. 1988. Environmental factors and the distribution of mangroves in Sundarbans with special reference to Heritiera fomes. Buch.-Ham. PhD Thesis (unpubl.), University of Calcutta.Google Scholar
  21. Komiyama, A., K. Ogino, S. Aksomkoae, and S. Sabhasri. 1987. Root biomass of a mangrove forest in southern Thailand 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology 3: 97–108.CrossRefGoogle Scholar
  22. Komiyama, A., E.O. Jin, and S. Poungparn. 2008. Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany 89: 128–137.CrossRefGoogle Scholar
  23. Linden, O., and A. Jernelöv. 1980. The mangrove swamp—an ecosystem in danger. Ambio 9: 81–88.Google Scholar
  24. MacNae, W. 1968. A general account of a fauna and flora of mangrove swamps and forests in the Indo-Pacific region. Advances in Marine Biology 6: 73–270.CrossRefGoogle Scholar
  25. McKee, K.L. 1995. Interspecific variation in growth, biomass partitioning, and defensive characteristics of neotropical mangrove seedlings: Response to light and nutrient availability. American Journal of Botany 82: 299–307.CrossRefGoogle Scholar
  26. Mirza, Q.M.M. 1997. Hydrological changes in the Ganges system in Bangladesh in the post-Farakka period. Hydrological Science Journal 42: 613–631.CrossRefGoogle Scholar
  27. Mitra, A., and S. Pal. 2002. The oscillating mangrove ecosystem and the Indian Sundarbans, ed. S. Banerjee and F. Tampal. New Delhi: WWF-India-WBSO.Google Scholar
  28. Mitra, A. and S. Zaman. 2015. Blue carbon reservoir of the blue planet, 299 pp. New Delhi: Springer India.Google Scholar
  29. Mitra, A., K. Banerjee, and D.P. Bhattacharyya. 2004. The other face of mangroves. Kolkata: Department of Environment, Government of West Bengal.Google Scholar
  30. Mitra, A., K. Banerjee, K. Sengupta, and A. Gangopadhyay. 2009. Pulse of climate change in Indian Sundarbans: A myth or reality? National Academy Science Letters 32: 1–7.Google Scholar
  31. Ong, J.E., W.K. Gong, and B.F. Clough. 1995. Structure and productivity of a 20-year old stand of Rhizophora apiculata BL mangrove forest. Journal of Biogeography 55: 417–424.Google Scholar
  32. Putz, F.E., and H.T. Chan. 1986. Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. Forest Ecology and Management 17: 211–230.CrossRefGoogle Scholar
  33. Rahman, M.A. 1994. Mangrove plant pathology of Sundarbans reserved forest in Bangladesh. Final Report of FAO/UNDP Project BGD/84/056, Khulna, 82 pp.Google Scholar
  34. Rudra, K. 1996. The Farakka Barrage Project—an interception to fluvial regime. Indian Journal of Landscape System and Ecological Studies 19: 105–110.Google Scholar
  35. Sengupta, K., M. Roy Chowdhury, G. Roy Chowdhury, A. Raha, S. Zaman, and A. Mitra. 2013. Spatial variation of stored carbon in Avicennia alba of Indian Sundarbans. Discovery Nature 3: 19–24.Google Scholar
  36. Solomon, S. (ed.). 2007. Climate change 2007The physical science basis: Working group I contribution to the fourth assessment report of the IPCC, vol. 4, 996 pp. Cambridge: Cambridge University Press.Google Scholar
  37. Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada Bulletin 167: 311.Google Scholar
  38. Tamai, S., T. Nakasuga, R. Tabuchi, and K. Ogino. 1986. Standing biomass of mangrove forests in Southern Thailand. Journal of the Japanese Forest Society 68: 384–388.Google Scholar
  39. Tuljapurkar, S., and C.V. Haridas. 2006. Temporal autocorrelation and stochastic population growth. Ecology Letters 9: 327–337.CrossRefGoogle Scholar
  40. Vaglio Laurin, G., W.D. Hawthorne, T. Chiti, A. Di Paola, R. Cazzolla Gatti, S. Marconi, S. Noce, E. Grieco, et al. 2016. Does degradation from selective logging and illegal activities differently impact forest resources? A case study in Ghana. iForest 9: 354–362.Google Scholar
  41. Valentini, R., A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, et al. 2014. A full greenhouse gases budget of Africa: Synthesis, uncertainties, and vulnerabilities. Biogeosciences 11: 381–407.CrossRefGoogle Scholar
  42. Wong, A.P.S., N.L. Bindoff, and J.A. Church. 1999. Large-scale freshening of intermediate waters in the Pacific and Indian oceans. Nature 400: 440–443.CrossRefGoogle Scholar
  43. Zaman, S., S.B. Bhattacharyya, P. Pramanick, A.K. Raha, S. Chakraborty, and A. Mitra. 2014. Rising water salinity: A threat to mangroves of Indian Sundarbans. In Water insecurity: A social dilemma (community, environment and disaster risk management, vol. 13, ed. M.A. Abedin, U. Habiba, and R. Shaw, 167–183. Bingley): Emerald Group.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  1. 1.School of Biodiversity & Conservation of Natural ResourcesCentral University of OrissaKoraputIndia
  2. 2.Biological Diversity and Ecology Laboratory, Bio-Clim-Land Centre of Excellence, Biological InstituteTomsk State UniversityTomskRussia
  3. 3.Department of Marine ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations