Advertisement

Ambio

, Volume 46, Issue 2, pp 162–172 | Cite as

Soil fertility, crop biodiversity, and farmers’ revenues: Evidence from Italy

  • Salvatore Di Falco
  • Elisavet Zoupanidou
Report

Abstract

This paper analyzes the interplay between soil fertility, crop biodiversity, and farmers’ revenues. We use a large, original, farm-level panel dataset. Findings indicate that both crop biodiversity and soil fertility have positive effects on farmers’ revenues. It is also shown that crop biodiversity and soil fertility may act as substitutes. These results provide evidence for the important role of diversity in the resilience of agroecosystems. Crop diversification can be a potential strategy to support productivity when soils are less fertile.

Keywords

Agroecosystems Crop diversification Italy Panel data Soil fertility 

Notes

Acknowledgments

We would like to thank the two reviewers, Martina Bozzola, Jesper Stage, and the Editor in Chief for the very useful comments and suggestions.

References

  1. Altieri, M.A. 1999. The ecological role of biodiversity in agroecosystems. Agriculture Ecosystems and Environment 74: 19–31.CrossRefGoogle Scholar
  2. Arellano, M., and S. Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies 58: 277–297.CrossRefGoogle Scholar
  3. Baltagi, B.H. 2001. Econometric analysis of panel data. Chichester: Wiley.Google Scholar
  4. Barrios, E. 2007. Soil biota, ecosystem services and land productivity. Ecological Economics 64: 269–285.CrossRefGoogle Scholar
  5. Bellon, M.R., and J.E. Taylor. 1993. Folk soil taxonomy and the partial adoption of new seed varieties. Economic Development and Cultural Change 41: 763–786.CrossRefGoogle Scholar
  6. Beshir, H., B. Emana, B. Kassa, and J. Haji. 2012. Economic efficiency of mixed crop-livestock production system in the north eastern highlands of Ethiopia: The stochastic frontier approach. Journal of Agricultural Economics and Development 1: 10–20.Google Scholar
  7. Chavas, J.P., J. Kliebenstein, and T.D. Crenshaw. 1985. Modeling dynamic agricultural production response: The case of swine production. American Journal of Agricultural Economics 67: 636–645.CrossRefGoogle Scholar
  8. Costantini E., G. L’Abate, R. Barbetti, M. Fantappié, R. Lorenzett, and S. Magini. 2012. Carta dei suoli d’Italia—Soil Map of Italy. CRA-ABP Centro di ricerca per l’agrobiologia e la pedologia, Firenze.Google Scholar
  9. Costantini, E., F. Urbano, and G. L’Abate. 2004. Soil regions of Italy. Firenze: ISSDS.Google Scholar
  10. Culas, R., and S. Mahendrarajah. 2005. Causes of diversification in agriculture over time: Evidence from Norwegian farming sector. Congress of the European Association of Agricultural Economists 2005, 1–17. E A Books, Copenhagen.Google Scholar
  11. De Bartolo, S., W. Otten, Q. Cheng, and A.M. Tarquis. 2011. Modeling soil system: Complexity under your feet. Biogeosciences 8: 3139–3142.CrossRefGoogle Scholar
  12. de Bruyn, L.A.L. 1997. The status of soil macrofauna as indicators of soil health to monitor the sustainability of Australian agricultural soils. Ecological Economics 23: 167–178.CrossRefGoogle Scholar
  13. Diaz, S., and S. Cabido. 2001. Vive la difference: Plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16: 646–655.CrossRefGoogle Scholar
  14. Di Falco, S., and J.-P. Chavas. 2007. Farmer management of production risk on degraded lands: The role of wheat variety diversity in the Tigray region, Ethiopia. Agricultural Economics 36: 147–156.CrossRefGoogle Scholar
  15. Di Falco, S., and J.-P. Chavas. 2008. Rainfall shocks, crop biodiversity and agroecosystem productivity. Land Economics 84: 83–96.CrossRefGoogle Scholar
  16. Di Falco, S., and J.-P. Chavas. 2009. On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia. American Journal of Agricultural Economics 91: 599–611.CrossRefGoogle Scholar
  17. Doran J.W., and T.B. Parkin. 1994. Defining and assessing soil quality. In Defining soil quality for a sustainable environment, ed. J.W. Doran, D.C. Coleman, D.F. Bezdicek, and B.A. Stewart, SSSA Special Publication 35. Madison, WI: Soil Science Society of America.Google Scholar
  18. Drucker A., M. Smale, and P. Zambrano. 2005. Valuation and sustainable management of crop and livestock biodiversity: A review of applied economics literature. SGRPI/IFPRI/ILRI.Google Scholar
  19. European Commission. 2002. Communication from the commission to the council, the European parliament, the economic and social committee and the committee of the regions: Towards a thematic strategy for soil protection. COM 179.Google Scholar
  20. FAO, IIASA, ISRIC, ISS-CAS, JRC. 2012. Harmonized World Soil Database (version1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.Google Scholar
  21. Giller, K.E., M.H. Beare, P. Lavellec, A. Izac, and M.J. Swift. 1997. Agricultural intensification, soil biodiversity and agroecosystem function. Applied Soil Ecology 6: 3–16.CrossRefGoogle Scholar
  22. Green, R.E., S.J. Cornell, J.P. Scharlemann, and A. Balmford. 2005. Farming and the fate of wild nature. Science 307: 550–555.CrossRefGoogle Scholar
  23. Gurr, G.M., S.D. Wratten, and J.M. Luna. 2003. Multi-function agricultural biodiversity: Pest management and other benefits. Basic and Applied Ecology 4: 107–116.CrossRefGoogle Scholar
  24. Hoffmann, I. 2011. Livestock biodiversity and sustainability. Livestock Science 139: 69–79.CrossRefGoogle Scholar
  25. Holling, C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.CrossRefGoogle Scholar
  26. Holtz-Eakin, D., W.K. Newey, and H.S. Rosen. 1988. Estimating vector autoregressions with panel data. Econometrica 56: 1371–1395.CrossRefGoogle Scholar
  27. Karlen, D.L., J.W. Mausbach, J.W. Doran, R.G. Cline, R.F. Harris, and G.E. Schuman. 1997. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal 61: 4–10.CrossRefGoogle Scholar
  28. Palmu, E., J. Ekroos, H.I. Hanson, H.G. Smith, and K. Hedlund. 2014. Landscape-scale crop diversity interacts with local management to determine ground beetle diversity. Basic and Applied Ecology 15: 241–249.CrossRefGoogle Scholar
  29. Smale, M., J. Hartell, P.W. Heisey, and B. Senauer. 1998. The contribution of genetic resources and diversity to wheat production in the Punjab of Pakistan. American Journal of Agricultural Economics 80: 482–493.CrossRefGoogle Scholar
  30. Swift, M.J., A.M.N. Izac, and M. van Noordwijk. 2004. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agriculture Ecosystem & Environment 104: 113–134.CrossRefGoogle Scholar
  31. Swift, M.J., J. Vandermeer, P.S. Ramakrishnan, J.M. Anderson, C.K., Ong, and B.A Hawkins. 1996. Biodiversity and agroecosystem function. Functional roles of biodiversity: A global perspective. New York: Wiley.Google Scholar
  32. Tilman, D., and J.A. Downing. 1994. Biodiversity and stability in grasslands. Nature 367: 363–365.CrossRefGoogle Scholar
  33. Tilman, D., J. Fargione, B. Wol, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. Schlesinger, et al. 2001. Forecasting agriculturally driven global environmental change. Science 292: 281–284.CrossRefGoogle Scholar
  34. Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671–677.CrossRefGoogle Scholar
  35. Tilman, D., D. Wedin, and J. Knops. 1996. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718–720.CrossRefGoogle Scholar
  36. Tilman, D., C. Lehman, and K. Thomson. 1997. Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America 94: 1857–1861.CrossRefGoogle Scholar
  37. Tittonell, P., K.D. Shepherd, B. Vanlauwe, and K.E. Giller. 2008. Unravelling the effects of soil and crop management on maize productivity in smallholder agricultural systems of western Kenya-An application of classification and regression tree analysis. Agriculture, Ecosystems and Environment 123: 137–150.CrossRefGoogle Scholar
  38. Vitousek, P.M., J.D. Aber, R.W. Howarth, G.E. Likens, P.A. Matson, D.W. Schindler, W.H. Schlesinger, and D.G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications 7: 737–750.Google Scholar
  39. Wieder, W.R., J. Boehnert, and G.B. Bonan. 2014. Evaluating soil biogeochemistry parameterizations in Earth system models with observations. Global Biogeochemical Cycles 28: 211–222.CrossRefGoogle Scholar
  40. Withana, S., D. Baldock, A. Farmer, M. Pallemaerts, P. Hjerp, E. Watkins, J. Armstrong, K. Medarova-Bergstrom, S. Gantioler. 2010. Strategic Orientations of EU Environmental Policy under the Sixth Environment Action Programme and Implications for the Future, Report for the IBGE-BIM, IEEP, London.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  1. 1.The Institute of Economics and EconometricsThe University of GenevaGenevaSwitzerland
  2. 2.University of GenevaGenevaSwitzerland

Personalised recommendations