Leverage points for sustainability transformation

Abstract

Despite substantial focus on sustainability issues in both science and politics, humanity remains on largely unsustainable development trajectories. Partly, this is due to the failure of sustainability science to engage with the root causes of unsustainability. Drawing on ideas by Donella Meadows, we argue that many sustainability interventions target highly tangible, but essentially weak, leverage points (i.e. using interventions that are easy, but have limited potential for transformational change). Thus, there is an urgent need to focus on less obvious but potentially far more powerful areas of intervention. We propose a research agenda inspired by systems thinking that focuses on transformational ‘sustainability interventions’, centred on three realms of leverage: reconnecting people to nature, restructuring institutions and rethinking how knowledge is created and used in pursuit of sustainability. The notion of leverage points has the potential to act as a boundary object for genuinely transformational sustainability science.

This is a preview of subscription content, log in to check access.

References

  1. Andersson, E., S. Barthel, S. Borgström, J. Colding, T. Elmqvist, C. Folke, and Å. Gren. 2014. Reconnecting cities to the biosphere: stewardship of green infrastructure and urban ecosystem services. Ambio 43: 445–453. doi:10.1007/s13280-014-0506-y.

    Article  Google Scholar 

  2. Ansell, C., and A. Gash. 2008. Collaborative governance in theory and practice. Journal of Public Administration Research and Theory 18: 543–571.

    Article  Google Scholar 

  3. Armitage, D., M. Marschke, and R. Plummer. 2008. Adaptive co-management and the paradox of learning. Global Environmental Change 18: 86–98.

    Article  Google Scholar 

  4. Arthur, W.B. 1994. Increasing returns and path dependence in the economy. Ann Arbor: University of Michigan Press.

    Google Scholar 

  5. Banson, K.E., N.C. Nguyen, O.J. Bosch, and T.V. Nguyen. 2015. A systems thinking approach to address the complexity of agribusiness for sustainable development in Africa: A case study in Ghana. Systems Research and Behavioral Science 32: 672–688.

    Article  Google Scholar 

  6. Bauer, M.W., and C. Knill. 2014. A conceptual framework for the comparative analysis of policy change: Measurement, explanation and strategies of policy dismantling. Journal of Comparative Policy Analysis: Research and Practice 16: 28–44.

    Article  Google Scholar 

  7. Berkes, F. 2009. Evolution of co-management: Role of knowledge generation, bridging organizations and social learning. Journal of Environmental Management 90: 1692–1702.

    Article  Google Scholar 

  8. Berkes, F., J. Colding, and C. Folke. 2002. Navigating social-ecological systems: Building resilience for complexity and change. Cambridge: Cambridge University Press.

    Google Scholar 

  9. Câmpeanu, C.N., and I. Fazey. 2014. Adaptation and pathways of change and response: A case study from Eastern Europe. Global Environmental Change 28: 351–367.

    Article  Google Scholar 

  10. Carey, G., and B. Crammond. 2015. Systems change for the social determinants of health. BMC Public Health 15: 1.

    Article  Google Scholar 

  11. Eburn, M., and S. Dovers. 2015. Learning lessons from disasters: Alternatives to royal commissions and other quasi-judicial inquiries. Australian Journal of Public Administration 74: 495–508.

    Article  Google Scholar 

  12. Ehrenfeld, J.R. 2004. Searching for sustainability: No quick fix. Reflections 5: 1–13.

    Google Scholar 

  13. Fischer, J., T.A. Gardner, E.M. Bennett, P. Balvanera, R. Biggs, S. Carpenter, T. Daw, C. Folke, R. Hill, and T.P. Hughes. 2015. Advancing sustainability through mainstreaming a social–ecological systems perspective. Current Opinion in Environmental Sustainability 14: 144–149.

    Article  Google Scholar 

  14. Fischer, J., T. Hartel, and T. Kuemmerle. 2012. Conservation policy in traditional farming landscapes. Conservation Letters 5: 167–175.

    Article  Google Scholar 

  15. Fischer, J., A.D. Manning, W. Steffen, D.B. Rose, K. Daniell, A. Felton, S. Garnett, B. Gilna, R. Heinsohn, and D.B. Lindenmayer. 2007. Mind the sustainability gap. Trends in Ecology & Evolution 22: 621–624.

    Article  Google Scholar 

  16. Foley, J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O’Connell, D.K. Ray, P.C. West, C. Balzer, E.M. Bennett, S.R. Carpenter, J. Hill, C. Monfreda, S. Polasky, J. Rockstrom, J. Sheehan, S. Siebert, D. Tilman, and D.P.M. Zaks. 2011. Solutions for a cultivated planet. Nature 478: 337–342.

    CAS  Article  Google Scholar 

  17. Folke, C., S.R. Carpenter, B. Walker, M. Scheffer, T. Chapin, and J. Rockström. 2010. Resilience thinking: integrating resilience, adaptability and transformability. Ecology and Society 15: 20.

    Google Scholar 

  18. Geels, F.W. 2011. The multi-level perspective on sustainability transitions: Responses to seven criticisms. Environmental Innovation and Societal Transitions 1: 24–40.

    Article  Google Scholar 

  19. Gergen, K.J. 2012. Toward transformation in social knowledge. Berlin: Springer.

    Google Scholar 

  20. Gunderson, L.H., and C.S. Holling (eds.). 2002. Panarchy: Understanding transformations in human and natural systems. Washington, DC: Island Press.

    Google Scholar 

  21. Hatfield-Dodds, S., H. Schandl, P.D. Adams, T.M. Baynes, T.S. Brinsmead, B.A. Bryan, F.H.S. Chiew, P.W. Graham, Nature Publishing Group, et al. 2015. Australia is “free to choose” economic growth and falling environmental pressures. Nature 527: 49–53. doi:10.1038/nature16065.

    CAS  Article  Google Scholar 

  22. Hill, R., G. Dyer, L.-M. Lozada-Ellison, A. Gimona, J. Martin-Ortega, J. Munoz-Rojas, and I. Gordon. 2015. A social–ecological systems analysis of impediments to delivery of the Aichi 2020 Targets and potentially more effective pathways to the conservation of biodiversity. Global Environmental Change 34: 22–34.

    Article  Google Scholar 

  23. Ison, R. 2008. Systems thinking and practice for action research. In The sage handbook of action research participative inquiry and practice, 2nd ed, ed. P.W. Reason, and H. Bradbury, 139–158. London: Sage Publications.

    Google Scholar 

  24. Ison, R. 2010. Systems practice: How to act in a climate change world. Berlin: Springer.

    Google Scholar 

  25. Ison, R. 2012. A cybersystemic framework for practical action. In Enough for all forever. A handbook for learning about sustainability, ed. J. Murray, G. Cawthorne, C. Dey, and C. Andrew. Champaign, Illinois: Common Ground Publishing.

    Google Scholar 

  26. Kaiser, F.G., K. Byrka, and T. Hartig. 2010. Reviving Campbell’s paradigm for attitude research. Personality and Social Psychology Review 14: 351–367.

    Article  Google Scholar 

  27. Kates, R.W., W.C. Clark, R. Corell, J.M. Hall, C.C. Jaeger, I. Lowe, J.J. Mccarthy, H.J. Schellnhuber, B. Bolin, and N.M. Dickson. 2001. Sustainability science. Laxenburg: International Institute for Applied Systems Analysis.

    Google Scholar 

  28. Keniger, L.E., K.J. Gaston, K.N. Irvine, and R.A. Fuller. 2013. What are the benefits of interacting with nature? International Journal of Environmental Research and Public Health 10: 913–935.

    Article  Google Scholar 

  29. Kickert, W.J.M., E.-H. Klijn, and J.F.M. Koppenjan (eds.). 1999. Managing complex networks, strategies for the public sector. London: Thousand Oaks.

    Google Scholar 

  30. Kiser, L., and E. Ostrom. 1982. The three worlds of action—a meta-theoretical synthesis of institutional approaches. In Strategies of political inquiry, ed. E. Ostrom. Beverly Hills: Sage.

    Google Scholar 

  31. Lang, D.J., A. Wiek, M. Bergmann, M. Stauffacher, P. Martens, P. Moll, M. Swilling, and C.J. Thomas. 2012. Transdisciplinary research in sustainability science: Practice, principles, and challenges. Sustainability Science 7: 25–43.

    Article  Google Scholar 

  32. Liu, J., H. Mooney, V. Hull, S.J. Davis, J. Gaskell, T. Hertel, J. Lubchenco, K.C. Seto, P. Gleick, and C. Kremen. 2015. Systems integration for global sustainability. Science 347: 1258832.

    Article  Google Scholar 

  33. Loos, J., D.J. Abson, M.J. Chappell, J. Hanspach, F. Mikulcak, M. Tichit, and J. Fischer. 2014. Putting meaning back into “sustainable intensification”. Frontiers in Ecology and the Environment 12: 356–361.

    Article  Google Scholar 

  34. Meadows, D. 1999. Leverage points: Places to intervene in a system. Hartland: The Sustainability Institute.

    Google Scholar 

  35. Miller, J.R. 2005. Biodiversity conservation and the extinction of experience. Trends in Ecology & Evolution 20: 430–434.

    Article  Google Scholar 

  36. Miller, T.R., A. Wiek, D. Sarewitz, J. Robinson, L. Olsson, D. Kriebel, and D. Loorbach. 2014. The future of sustainability science: A solutions-oriented research agenda. Sustainability Science 9: 239–246.

    Article  Google Scholar 

  37. Newell, B. 2012. Simple models, powerful ideas: Towards effective integrative practice. Global Environmental Change 22: 776–783.

    Article  Google Scholar 

  38. Newig, J. 2013. Produktive Funktionen von Kollaps und Zerstörung für gesellschaftliche Transformationsprozesse in Richtung Nachhaltigkeit. In Soziale Innovation und Nachhaltigkeit, ed. J. Rückert-John, 133–149. Wiesbaden: Springer.

    Google Scholar 

  39. Newig, J., E. Kochskämper, E. Challies, and N.W. Jager. 2016. Exploring governance learning: How policymakers draw on evidence, experience and intuition in designing participatory flood risk planning. Environmental Science & Policy 55: 353–360.

    Article  Google Scholar 

  40. Nisbet, E.K., J.M. Zelenski, and S.A. Murphy. 2009. The nature relatedness scale: Linking individuals’ connection with nature to environmental concern and behavior. Environment and Behavior 41: 715–740.

    Article  Google Scholar 

  41. Ostrom, E. 2009. A general framework for analyzing sustainability of social-ecological systems. Science 325: 1931.

    Article  Google Scholar 

  42. Pahl-Wostl, C. 2007. Transitions towards adaptive management of water facing climate and global change. Water Resources Management 21: 49–62.

    Article  Google Scholar 

  43. Phelps, J., L.R. Carrasco, E.L. Webb, L.P. Koh, and U. Pascual. 2013. Agricultural intensification escalates future conservation costs. Proceedings of the National Academy of Sciences 110: 7601–7606.

    CAS  Article  Google Scholar 

  44. Piattoni, S. 2010. The theory of multi-level governance: Conceptual, empirical, and normative challenges. Oxford: Oxford University Press.

    Google Scholar 

  45. Prell, C., K. Hubacek, M. Reed, C. Quinn, N. Jin, J. Holden, T. Burt, M. Kirby, and J. Sendzimir. 2007. If you have a hammer everything looks like a nail: Traditional versus participatory model building. Interdisciplinary Science Reviews 32: 263–282.

    Article  Google Scholar 

  46. Raymond, C.M., G.G. Singh, K. Benessaiah, J.R. Bernhardt, J. Levine, H. Nelson, N.J. Turner, B. Norton, J. Tam, and K.M. Chan. 2013. Ecosystem services and beyond: Using multiple metaphors to understand human–environment relationships. BioScience 63: 536–546.

    Article  Google Scholar 

  47. Restall, B., and E. Conrad. 2015. A literature review of connectedness to nature and its potential for environmental management. Journal of Environmental Management 159: 264–278.

    Article  Google Scholar 

  48. Scholz, R.W. 2011. Environmental literacy in science and society. New york: Cambridge University Press.

    Google Scholar 

  49. Schultz, P.W., V.V. Gouveia, L.D. Cameron, G. Tankha, P. Schmuck, and M. Franěk. 2005. Values and their relationship to environmental concern and conservation behavior. Journal of Cross-Cultural Psychology 36: 457–475.

    Article  Google Scholar 

  50. Schumpeter, J. 1950. Capitalism, socialism and democracy. New York: Harper and Row.

    Google Scholar 

  51. Spangenberg, J.H. 2011. Sustainability science: A review, an analysis and some empirical lessons. Environmental Conservation 38: 275–287.

    Article  Google Scholar 

  52. Steffen, W., K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, S.R. Carpenter, W. De Vries, C.A. De Wit, C. Folke, D. Gerten, J. Heinke, G.M. Mace, L.M. Persson, V. Ramanathan, B. Reyers, and S. Sörlin. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855.

    Article  Google Scholar 

  53. Thelen, K. 2009. Institutional change in advanced political economies. British Journal of Industrial Relations 47: 471–498.

    Article  Google Scholar 

  54. Wells, N.M., and K.S. Lekies. 2006. Nature and the life course: Pathways from childhood nature experiences to adult environmentalism. Children Youth and Environments 16: 1–25.

    Google Scholar 

  55. Wiedmann, T.O., H. Schandl, M. Lenzen, D. Moran, S. Suh, J. West, and K. Kanemoto. 2015. The material footprint of nations. Proceedings of the National Academy of Sciences 112: 6271–6276. doi:10.1073/pnas.1220362110.

    CAS  Article  Google Scholar 

  56. Wiek, A., and D.J. Lang. 2016. Transformational sustainability research methodology. In Sustainability science: An introduction, ed. H. Heinrichs, P. Martens, G. Michelsen, and A. Wiek, 31–41. Dordrecht: Springer. doi:10.1007/978-94-017-7242-6_3.

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their critical and insightful comments which helped substantially improve the manuscript. This research is supported by a Volkswagenstiftung and the Niedersächsisches Ministerium für Wissenschaft und Kultur (Grant Number A112269).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David J. Abson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abson, D.J., Fischer, J., Leventon, J. et al. Leverage points for sustainability transformation. Ambio 46, 30–39 (2017). https://doi.org/10.1007/s13280-016-0800-y

Download citation

Keywords

  • Human–environment systems
  • Institutional change
  • Knowledge creation and use
  • Social–ecological systems
  • Sustainability science
  • Transdisciplinarity