Arbault, D., M. Rivière, B. Rugani, E. Benetto, and L. Tiruta-Barna. 2014. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of the Total Environment 472: 262–272.
CAS
Article
Google Scholar
Aronsson, P., H. Rosenqvist, and I. Dimitriou. 2014. Impact of nitrogen fertilization to short-rotation willow coppice plantations grown in Sweden on yield and economy. Bioenergy Research 7: 993–1001.
CAS
Article
Google Scholar
Austin, P. 2014. The economic benefits of native shelter belts report 2/14. Warrnambool: Basalt-to-Bay Landcare.
Google Scholar
Bennett, R.G., D. Mendham, G. Ogden, and J. Bartle. 2014. Enhancing tree belt productivity through capture of short-slope runoff water. GCB Bioenergy 7: 1107–1117.
Article
Google Scholar
Berg, Å. 2002. Breeding birds in short-rotation coppices on farmland in central Sweden—The importance of Salix height and adjacent habitats. Agriculture, Ecosystems & Environment 90: 265–276.
Article
Google Scholar
Berndes, G., S. Ahlgren, P. Börjesson, and A. Cowie. 2013. Bioenergy and land use change state of the art. Wiley Interdisciplinary Reviews: Energy and Environment 2: 282–303.
Article
Google Scholar
Börjesson, P. 1999. Environmental effects of energy crop cultivation in Sweden—Part I: Identification and quantification. Biomass and Bioenergy 16: 137–154.
Article
Google Scholar
Börjesson, P., G. Berndes, F. Fredriksson, and T. Kåberger. 2002. Multifunktionella bioenergiodlingar. Slutrapport till Energimyndigheten (Multifunctional bioenergy plantations. Final report to the Swedish Energy Agency). Report No 37, Environmental and Energy Systems Studies, Lund University, Lund.
Börjesson, P., and G. Berndes. 2006. The prospects for willow plantations for wastewater treatment in Sweden. Biomass and Bioenergy 30: 428–438.
Article
Google Scholar
Brandt, M. H. Ejhed, and L. Rapp. 2008. Näringsbelastning på Östersjön och Västerhavet 2006 (Nutrient load on the Baltic Sea and the North Sea 2006—OK translation David?). Report 5815, Swedish Environmental Protection Agency, Stockholm.
Burney, J.A., S.J. Davis, and D.B. Lobell. 2010. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America 107: 12052–12057.
CAS
Article
Google Scholar
Carsan, S., A. Stroebel, I. Dawson, R. Kindt, C. Mbow, J. Mowo, and R. Jamnadass. 2014. Can agroforestry option values improve the functioning of drivers of agricultural intensification in Africa? Current Opinion in Environmental Sustainability 6: 35–40.
Article
Google Scholar
CML, 2010. Characterisation factors database available online from Institute of Environmental Sciences (CML), Universiteit Leiden, Leiden. http://cml.leiden.edu/software/data-cmlia.html. Accessed 15 May 2012.
Dalgaard, T., J.F. Bienkowski, A. Bleeker, U. Dragosits, J.L. Drouet, P. Durand, A. Frumau, N.J. Hutchings, et al. 2012. Farm nitrogen balances in six European landscapes as an indicator for nitrogen losses and basis for improved management. Biogeosciences 9: 5303–5321.
CAS
Article
Google Scholar
Dimitriou, I., H. Rosenqvist, and G. Berndes. 2011. Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass and Bioenergy 35: 4613–4618.
Article
Google Scholar
EC. 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. OJEU: L 140/16.
Ecoinvent. 2014. Ecoinvent database version 3.1, accessed via SimaPro.
Eurostat. 2015. Population and employment statistics page. http://appsso.eurostat.ec.europa.eu/nui/show.do. Accessed 22 Sept 2015.
Firbank, L., R.B. Bradbury, D.I. McCracken, and C. Stoate. 2013. Delivering multiple ecosystem services from Enclosed Farmland in the UK. Agriculture, Ecosystems & Environment 166: 65–75.
Article
Google Scholar
Fischer, G., E. Hizsnyik, S. Prieler, H., and van Velthuizen. 2007. Assessment of biomass potentials for biofuel feedstock in Europe: Methodology and results. REFUEL project, Workpackage 2. Laxenburg.
Garnett, T., M.C. Appleby, A. Balmford, I.J. Bateman, T.G. Benton, et al. 2013. Sustainable intensification in agriculture: Premises and Policies. Science 341: 33–34.
CAS
Article
Google Scholar
Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812–818.
CAS
Article
Google Scholar
González-García, S., B. Mola-Yudego, I. Dimitriou, P. Aronsson, and R. Murphy. 2012. Environmental assessment of energy production based on long term commercial willow plantations in Sweden. Science of the Total Environment 421–422: 210–219.
Article
Google Scholar
Haas, G., F. Wetterich, and U. Geier. 2000. Life cycle assessment framework in agriculture on the farm level. International Journal of LCA 5: 345–348.
Article
Google Scholar
Havlík, P., H. Valin, M. Herrero, M. Obersteiner, E. Schmid, M.C. Rufino, A. Mosnier, P.K. Thornton, H. Böttcher, R.T. Conant, S. Frank, S. Fritz, S. Fuss, F. Kraxner, and A. Notenbaert. 2014. Climate change mitigation through livestock system transitions. PNAS 111: 3709–3714.
Article
Google Scholar
IPCC. 2006. IPCC GUIDELINES for national greenhouse gas inventories. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html. Accessed 31 Mar 2016.
Johnsson, H., and K. Mårtensson. 2002. Kväveläckage från svensk åkermark (Nitrogen leaching from Swedish arable land). Report 5248, Swedish Environmental Protection Agency, Stockholm.
Jordbruksverket. 2014a. Jordbruksstatistisk årsbok 2014. Jönköping.
Jordbruksverket. 2014b. Riktlinjer för gödsling och kalkning 2015. Jönköping.
Kloverpris, J., H. Wenzel, and P. Nielsen. 2008. Life cycle inventory modeling of land use induced by crop consumption. International Journal of Life Cycle Assessment 13: 13–21.
Google Scholar
Kort, J. 1988. Benefits of windbreaks to field and forage crops. Agriculture, Ecosystems & Environment 22–23: 165–190.
Article
Google Scholar
Lupp, G., J. Albrecht, M. Darbi, and O. Bastian. 2011. Ecosystem services in energy crop production—A concept for regulatory measures in spatial planning? Journal of Landscape Ecology 4: 49–66.
Article
Google Scholar
Kiedrzyńska, E., A. Jóźwik, M. Kiedrzyński, and M. Zalewski. 2014. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin. Marine Pollution Bulletin 88: 162–173.
Article
Google Scholar
Lindroth, A., and A. Båth. 2009. Assessment of regional willow coppice yield in Sweden on basis of water availability. Forest Ecology and Management 121: 57–65.
Article
Google Scholar
Maskell, L.C., A. Crowe, M.J. Dunbar, B. Emmett, et al. 2013. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. Journal of Applied Ecology 50: 561–571.
Article
Google Scholar
Matthews, R.B., and P. Grogan. 2001. Potential C-sequestration rates of short-rotation coppiced willow and Miscanthus biomass crops: A modelling study. Aspects of Applied Biology 65: 303–312.
Google Scholar
McKay, H. ed. 2011. Short rotation forestry: Review of growth and environmental impacts. Forest Research Monograph, 2, Forest Research, Surrey.
Misselbrook, T.H., S.L. Gilhespy, and L.M. Cardenas (eds.). 2012. Inventory of ammonia emissions from UK agriculture 2011. London: Defra.
Google Scholar
Morton, D.S., R. DeFries, Y.E. Shimabukuro, L.O. Anderson, E. Arai, F. del Bon Espirito-Santo, R. Freitas, and J. Morisette. 2006. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. PNAS 103: 14637–14641.
CAS
Article
Google Scholar
Mulligan, D., R. Edwards, L. Marelli, N. Scarlat, M. Brandao, and F. Monforti-Ferrario. 2010. The effects of increased demand for biofuel feedstocks on the world agricultural markets and areas. JRC, Ispra.
PBL. 2011. The protein puzzle: The consumption and production of meat, dairy and fish in the European Union. PBL (Netherlands Environmental Assessment Agency), The Hague.
Pinder, R.W., E.A. Davidson, C.L. Goodalec, T.L. Greavera, J.D. Herricka, and L. Liud. 2012. Climate change impacts of US reactive nitrogen. Proceedings of the National Academy of Sciences of the USA 109: 7671–7675.
CAS
Article
Google Scholar
Plassmann, K. 2012. Methods for assessing the carbon footprints of products can favour low- over high-yielding agricultural systems when carbon removals are included. Nature Climate Change 2: 2–6.
Google Scholar
Rehl, T., J. Lansche, and J. Müller. 2012. Life cycle assessment of energy generation from biogas—Attributional versus consequential approach. Renewable and Sustainable Energy Reviews 16: 3766–3775.
Article
Google Scholar
Rockström, J., W. Steffen, K. Noone, A. Persson, S. Chapin, E.F. Lambin, T.M. Lenton, M. Scheffer, et al. 2014. A safe operating space for humanity. Nature 461: 472–475.
Article
Google Scholar
Rosemond, A.D., J.P. Benstead, P.M. Bumpers, V. Gulis, J.S. Kominoski, D.W.P. Manning, K. Suberkropp, and J.B. Wallace. 2015. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347: 1142–1145.
CAS
Article
Google Scholar
SCB. 2014 Skane land data. Statistiska centralbyrån, Stockholm. http://www.scb.se/. Accessed Nov 2014.
Sikkema, R., M. Steiner, M. Junginger, W. Hiegl, M.T. Hansen, and A. Faaij. 2011. The European wood pellet markets: current status and prospects for 2020. Biofuels Bioprod Biorefining 5: 250–278.
CAS
Article
Google Scholar
Sleeswijk, W., A.L. van Oers, J. Guinée, J. Struijs, and M. Huijbregts. 2008. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of the Total Environment 390: 227–240.
CAS
Article
Google Scholar
Sluka, C., and P.C. Peck. 2015. Stakeholder dynamics in the forest energy sector: Key issues to manage and ways forward. Biofuels, Bioproducts and Biorefining 9: 51–71.
CAS
Article
Google Scholar
Styles, D., and M.B. Jones. 2007. Energy crops in Ireland: Quantifying potential reductions in greenhouse gas emissions from the agriculture and electricity sectors. Biomass and Bioenergy 31: 759–772.
CAS
Article
Google Scholar
Styles, D., J. Gibbons, A.P. Williams, H. Stichnothe, D.R. Chadwick, and J.R. Healey. 2015a. Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock scenarios on dairy farms, global change biology bioenergy 7: 1034–1049.
CAS
Google Scholar
Styles, D., J. Gibbons, A.P. Williams, J. Dauber, B. Urban, H. Stichnothe, D. Chadwick, and D.L. Jones. 2015b. Consequential life cycle assessment of biogas, biofuel and biomass energy options in an arable rotation. Global Change Biology Bioenergy 7: 1305–1320.
CAS
Article
Google Scholar
Styles, D., E. Mesa-Dominguez, and D. Chadwick. 2016. Environmental balance of the of the UK biogas sector: An evaluation by consequential life cycle assessment. Science of the Total Environment 560–561: 241–253.
Article
Google Scholar
Tonini, D., L. Hamelin, H. Wenzel, and T. Astrup. 2012. Bioenergy production from perennial energy crops: A consequential LCA of 12 bioenergy scenarios including land use changes. Environmental Science and Technology 46: 13521–13530.
Article
Google Scholar
Valentine, J., J. Clifton-Brown, A. Hastings, P. Robson, G. Allison, and P. Smith. 2012. Food versus fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4: 1–19.
Article
Google Scholar
Vázquez-Rowe, I., A. Marvuglia, S. Rege, and E. Benetto. 2014. Applying consequential LCA to support energy policy: Land use change effects of bioenergy production. Science of the Total Environment 472: 78–89.
Article
Google Scholar
Weidema, B.P., T. Ekvall, and R. Heijungs. 2009. Guidelines for application of deepened and broadened LCA. Deliverable D18 of work package 5 of the CALCAS project. ENEA, Rome.
Withers, P. 2013. Personal communication, 22 April 2013.
Zamagni, A., J. Guinée, R. Heijungs, P. Masoni, and A. Raggi. 2012. Lights and shadows in consequential LCA. The International Journal of Life Cycle Assessment 17: 904–918.
Article
Google Scholar