Ambio

, Volume 45, Issue 6, pp 649–660 | Cite as

Has eutrophication promoted forage fish production in the Baltic Sea?

  • Margit Eero
  • Helén C. Andersson
  • Elin Almroth-Rosell
  • Brian R. MacKenzie
Report

Abstract

Reducing anthropogenic nutrient inputs is a major policy goal for restoring good environmental status of coastal marine ecosystems. However, it is unclear to what extent reducing nutrients would also lower fish production and fisheries yields. Empirical examples of changes in nutrient loads and concurrent fish production can provide useful insights to this question. In this paper, we investigate to what extent a multi-fold increase in nutrient loads from the 1950s to 1980s enhanced forage fish production in the Baltic Sea. We use monitoring data on fish stock dynamics covering the period of the nutrient increase, combined with nutrient concentrations from a 3-dimensional coupled physical-biogeochemical ocean model. The results suggest that nutrient enrichment enhanced the biomass level of forage fish by up to 50 % in some years and areas due to increased body weight of fish. However, the trends in fish biomasses were generally decoupled from changes in nutrient concentrations.

Keywords

Nutrients Fish production Recruitment Body weight 

Notes

Acknowledgments

This work was supported by the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 266445 for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS) and resulted from the BONUS BIO-C3 project supported by BONUS (Art 185), funded jointly by the EU and Innovation Fund Denmark and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) (219-2013-2041). Support was also received by the Norden Top-level Research Initiative sub-programme “Effect Studies and Adaptation to Climate Change” through the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER).

Supplementary material

13280_2016_788_MOESM1_ESM.pdf (314 kb)
Supplementary material 1 (PDF 314 kb)

References

  1. Andersen, J.H., J. Carstensen, D.J. Conley, K. Dromph, V. Fleming-Lehtinen, B.G. Gustafsson, A.B. Josefson, A. Norkko, et al. 2015. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biological Reviews. doi: 10.1111/brv.12221.Google Scholar
  2. Anderson, D.M., J.M. Burkholder, W.P. Cochlan, P.M. Glibert, C.J. Gobler, C.A. Heil, R.M. Kudela, M.L. Parsons, et al. 2008. Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae 8: 39–53.CrossRefGoogle Scholar
  3. Bernotas, E. 2002. Changes in fish biomass under impact of a thermal effluent and eutrophication in Lake Druksiai. Acta Zoologica Lituanica 12: 242–253.CrossRefGoogle Scholar
  4. Cardinale, M., M. Casini, and F. Arrhenius. 2002. The influence of biotic and abiotic factors on the growth of sprat (Sprattus sprattus) in the Baltic Sea. Aquatic Living Resources 15: 273–281.CrossRefGoogle Scholar
  5. Carpenter, S.R., N.F. Caraco, D.L. Correll, R.W. Howarth, A.N. Sharpley, and V.H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.CrossRefGoogle Scholar
  6. Casini, M., V. Bartolino, J.C. Molinero, and G. Kornilovs. 2010. Linking fisheries, trophic interactions and climate: Threshold dynamics drive herring Clupea harengus growth in the central Baltic Sea. Marine Ecology Progress Series 413: 241–252.CrossRefGoogle Scholar
  7. Casini, M., G. Kornilovs, M. Cardinale, C. Möllmann, W. Grygiel, P. Jonsson, T. Raid, J. Flinkman, and V. Feldman. 2011. Spatial and temporal density dependence regulates the condition of central Baltic Sea clupeids: Compelling evidence using an extensive international acoustic survey. Population Ecology 53: 511–523.CrossRefGoogle Scholar
  8. Cederwall, H., and R. Elmgren. 1980. Biomass increase of benthic macrofauna demonstrates eutrophication of the Baltic Sea. Ophelia 1: 287–304.Google Scholar
  9. Cederwall, H., and R. Elmgren. 1990. Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 19: 109–112.Google Scholar
  10. Chassot, E., F. Mélin, O. Le Pape, and D. Gascuel. 2007. Bottom-up control regulates fisheries production at the scale of eco-regions in European seas. Marine Ecology Progress Series 343: 45–55.CrossRefGoogle Scholar
  11. Chassot, E., S. Bonhommeau, N.K. Dulvy, F. Mélin, R. Watson, D. Gascuel, and O. Le Pape. 2010. Global marine primary production constrains fisheries catches. Ecology Letters 13: 495–505.CrossRefGoogle Scholar
  12. Conley, D.J., S. Björck, E. Bonsdorff, J. Carstensen, G. Destouni, B.G. Gustafsson, S. Hietanen, M. Kortekaas, et al. 2009. Hypoxia-related processes in the Baltic Sea. Environmental Science and Technology 43: 3412–3420.CrossRefGoogle Scholar
  13. Díaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.CrossRefGoogle Scholar
  14. Dippner, J.W., G. Kornilovs, and K. Junker. 2012. A multivariate Baltic Sea environmental index. Ambio 41: 699–708.CrossRefGoogle Scholar
  15. Eero, M., B.R. MacKenzie, F.W. Köster, and H. Gislason. 2011. Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, exploitation and climate variability. Ecological Applications 21: 214–226.CrossRefGoogle Scholar
  16. Eero, M. 2012. Reconstructing the population dynamics of sprat (Sprattus sprattus balticus) in the Baltic Sea in the 20th century. ICES Journal of Marine Science 69: 1010–1018.CrossRefGoogle Scholar
  17. Eilola, K., H.E.M. Meier, and E. Almroth. 2009. On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea: A model study. Journal of Marine Systems 75: 163–184.CrossRefGoogle Scholar
  18. Elmgren, R. 1989. Man’s impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio 18: 326–331.Google Scholar
  19. Elmgren, R. 2001. Understanding human impact on the Baltic Sea ecosystem: changing views in recent decades. Ambio 30: 222–231.CrossRefGoogle Scholar
  20. Elwertowski, J., M. Giedz, and J. Maciejczyk, 1974. Changes of fat content in Baltic sprat during the past 25 years. ICES CM Document H: 14.Google Scholar
  21. Haddon, M. 2001. Modelling and quantitative methods in fisheries. Florida: Chapman & Hall/CRC.Google Scholar
  22. Hanson, J.M., and W.C. Leggett. 1982. Empirical prediction of fish biomass and yield. Canadian Journal of Fisheries and Aquatic Sciences 39: 257–263.CrossRefGoogle Scholar
  23. Hansson, S., O. Hjerne, C. Harvey, J.F. Kitchell, S.P. Cox, and T.E. Essington. 2007. Managing Baltic Sea fisheries under contrasting production and predation regimes: Ecosystem model analyses. Ambio 36: 265–271.CrossRefGoogle Scholar
  24. Hägg, H.E., S.W. Lyon, T. Wällstedt, C.-M. Mörth, B. Claremar, and C. Humborg. 2014. Future nutrient load scenarios for the Baltic Sea due to climate and lifestyle changes. Ambio 43: 337–351.CrossRefGoogle Scholar
  25. HELCOM. 2007. Baltic Sea action plan. Helsinki: HELCOM.Google Scholar
  26. Jansson, B.O., and K. Dahlberg. 1999. The environmental status of the Baltic Sea in the 1940s, today and in the future. Ambio 28: 312–319.Google Scholar
  27. Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, et al. 2005. Eutrophication of Chesapeake Bay: Historical trends and ecological interaction. Marine Ecology Progress Series 303: 1–29.CrossRefGoogle Scholar
  28. Kerr, S.R., and R.A. Ryder. 1992. Effects of cultural eutrophication on coastal marine fisheries: A comparative approach. In Marine coastal eutrophication: The response of marine transitional systems to human impact: Problems and perspectives for restoration: Proceedings of an international conference, ed. R.A. Vollenweider, R. Marchetti, and R. Viviani, 599–614. Amsterdam: Elsevier Science Publishers B.V.Google Scholar
  29. Knowler, D. 2007. Estimation of a stock–recruitment relationship for Black Sea anchovy (Engraulis encrasicolus) under the influence of nutrient enrichment and the invasive comb-jelly, Mnemiopsis leidyi. Fisheries Research 84: 275–281.CrossRefGoogle Scholar
  30. Kononen, K., and Å. Niemi. 1984. Long-term variation in the phytoplankton composition at the entrance to the Gulf of Finland. Ophelia 3: 101–110.Google Scholar
  31. Köster, F.W., C. Möllmann, S. Neuenfeldt, M. Vinther, M.A.S. John, J. Tomkiewicz, R. Voss, H.-H. Hinrichsen, et al. 2003. Fish stock development in the central Baltic Sea (1974–1999) in relation to variability in the environment. ICES Marine Science Symposia 219: 294–306.Google Scholar
  32. Lehmann, A., W. Krauss, and H.-H. Hinrichsen. 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 54: 299–316.CrossRefGoogle Scholar
  33. MacKenzie, B.R., H. Gislason, C. Möllmann, and F.W. Köster. 2007. Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Global Change Biology 13: 1348–1367.CrossRefGoogle Scholar
  34. Margonski, P., S. Hansson, M.T. Tomczak, and R. Grzebielec. 2010. Climate influence on Baltic cod, sprat, and herring stock–recruitment relationships. Progress in Oceanography 87: 277–288.CrossRefGoogle Scholar
  35. Massol, F., P. David, D. Gerdeaux, and P. Jarne. 2007. The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. Journal of Animal Ecology 76: 538–551.CrossRefGoogle Scholar
  36. Mcowen, C.J., W.W.L. Cheung, R.R. Rykaczewski, R.A. Watson, and L.J. Wood. 2015. Is fisheries production within Large Marine Ecosystems determined by bottom-up or top-down forcing? Fish and Fisheries 16: 623–632.CrossRefGoogle Scholar
  37. Meier, H.E.M., R. Döscher, and T. Faxén. 2003. A multiprocessor coupled ice-ocean model for the Baltic Sea: Application to salt inflow. Journal of Geophysical Research 108: 3273.CrossRefGoogle Scholar
  38. Meier, H.E.M. 2007. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuarine, Coastal and Shelf Science 74: 610–627.CrossRefGoogle Scholar
  39. Micheli, F. 1999. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285: 1396–1399.CrossRefGoogle Scholar
  40. Möllmann, C., G. Kornilovs, M. Fetter, and F.W. Köster. 2005. Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES Journal of Marine Science 62: 1270–1280.CrossRefGoogle Scholar
  41. Möllmann, C., G. Kornilovs, and L. Sidrevics. 2000. Long term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research 22: 2015–2038.CrossRefGoogle Scholar
  42. Nixon, S.W., and B.A. Buckley. 2002. “A strikingly rich zone”—Nutrient enrichment and secondary production in coastal marine ecosystems. Estuaries 25: 782–796.CrossRefGoogle Scholar
  43. Ojaveer, E. 2003. Baltic herring. In Fishes of Estonia, ed. E. Ojaveer, E. Pihu, and T. Saat, 58–79. Tallinn: Estonian Academy Publishers (in Estonian).Google Scholar
  44. Österblom, H., S. Hansson, U. Larsson, O. Hjerne, F. Wulff, R. Elmgren, and C. Folke. 2007. Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems 10: 887–889.CrossRefGoogle Scholar
  45. Ricker, W.E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada 11: 559–623.CrossRefGoogle Scholar
  46. Smith, V.H., G.D. Tilman, and J.C. Nekola. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.CrossRefGoogle Scholar
  47. Sommer, U., H. Stibor, A. Katechakis, F. Sommer, and T. Hansen. 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: Primary production. Hydrobiologia 484: 11–20.CrossRefGoogle Scholar
  48. Voss, R., M.A. Peck, H.-H. Hinrichsen, C. Clemmesen, H. Baumann, D. Stepputtis, M. Bernreuther, J.O. Schmidt, et al. 2012. Recruitment processes in Baltic sprat—A re-evaluation of GLOBEC Germany hypotheses. Progress in Oceanography 107: 61–79.CrossRefGoogle Scholar
  49. Ware, D.M., and R.E. Thomson. 2005. Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific. Science 308: 1280–1284.CrossRefGoogle Scholar
  50. Wulff, F., G. Aertebjerg, G. Nicolaus, Å. Niemi, P. Ciszewski, S. Sculz, and W. Kaiser. 1986. The changing pelagic ecosystem of the Baltic Sea. Ophelia 4: 299–319.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  • Margit Eero
    • 1
  • Helén C. Andersson
    • 2
  • Elin Almroth-Rosell
    • 2
  • Brian R. MacKenzie
    • 1
  1. 1.National Institute for Aquatic ResourcesTechnical University of DenmarkCharlottenlundDenmark
  2. 2.Swedish Meteorological and Hydrological InstituteNorrköpingSweden

Personalised recommendations