Skip to main content

Advertisement

Log in

Has eutrophication promoted forage fish production in the Baltic Sea?

  • Report
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Reducing anthropogenic nutrient inputs is a major policy goal for restoring good environmental status of coastal marine ecosystems. However, it is unclear to what extent reducing nutrients would also lower fish production and fisheries yields. Empirical examples of changes in nutrient loads and concurrent fish production can provide useful insights to this question. In this paper, we investigate to what extent a multi-fold increase in nutrient loads from the 1950s to 1980s enhanced forage fish production in the Baltic Sea. We use monitoring data on fish stock dynamics covering the period of the nutrient increase, combined with nutrient concentrations from a 3-dimensional coupled physical-biogeochemical ocean model. The results suggest that nutrient enrichment enhanced the biomass level of forage fish by up to 50 % in some years and areas due to increased body weight of fish. However, the trends in fish biomasses were generally decoupled from changes in nutrient concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Andersen, J.H., J. Carstensen, D.J. Conley, K. Dromph, V. Fleming-Lehtinen, B.G. Gustafsson, A.B. Josefson, A. Norkko, et al. 2015. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biological Reviews. doi:10.1111/brv.12221.

    Google Scholar 

  • Anderson, D.M., J.M. Burkholder, W.P. Cochlan, P.M. Glibert, C.J. Gobler, C.A. Heil, R.M. Kudela, M.L. Parsons, et al. 2008. Harmful algal blooms and eutrophication: Examining linkages from selected coastal regions of the United States. Harmful Algae 8: 39–53.

    Article  CAS  Google Scholar 

  • Bernotas, E. 2002. Changes in fish biomass under impact of a thermal effluent and eutrophication in Lake Druksiai. Acta Zoologica Lituanica 12: 242–253.

    Article  Google Scholar 

  • Cardinale, M., M. Casini, and F. Arrhenius. 2002. The influence of biotic and abiotic factors on the growth of sprat (Sprattus sprattus) in the Baltic Sea. Aquatic Living Resources 15: 273–281.

    Article  Google Scholar 

  • Carpenter, S.R., N.F. Caraco, D.L. Correll, R.W. Howarth, A.N. Sharpley, and V.H. Smith. 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications 8: 559–568.

    Article  Google Scholar 

  • Casini, M., V. Bartolino, J.C. Molinero, and G. Kornilovs. 2010. Linking fisheries, trophic interactions and climate: Threshold dynamics drive herring Clupea harengus growth in the central Baltic Sea. Marine Ecology Progress Series 413: 241–252.

    Article  Google Scholar 

  • Casini, M., G. Kornilovs, M. Cardinale, C. Möllmann, W. Grygiel, P. Jonsson, T. Raid, J. Flinkman, and V. Feldman. 2011. Spatial and temporal density dependence regulates the condition of central Baltic Sea clupeids: Compelling evidence using an extensive international acoustic survey. Population Ecology 53: 511–523.

    Article  Google Scholar 

  • Cederwall, H., and R. Elmgren. 1980. Biomass increase of benthic macrofauna demonstrates eutrophication of the Baltic Sea. Ophelia 1: 287–304.

    Google Scholar 

  • Cederwall, H., and R. Elmgren. 1990. Biological effects of eutrophication in the Baltic Sea, particularly the coastal zone. Ambio 19: 109–112.

    Google Scholar 

  • Chassot, E., F. Mélin, O. Le Pape, and D. Gascuel. 2007. Bottom-up control regulates fisheries production at the scale of eco-regions in European seas. Marine Ecology Progress Series 343: 45–55.

    Article  CAS  Google Scholar 

  • Chassot, E., S. Bonhommeau, N.K. Dulvy, F. Mélin, R. Watson, D. Gascuel, and O. Le Pape. 2010. Global marine primary production constrains fisheries catches. Ecology Letters 13: 495–505.

    Article  Google Scholar 

  • Conley, D.J., S. Björck, E. Bonsdorff, J. Carstensen, G. Destouni, B.G. Gustafsson, S. Hietanen, M. Kortekaas, et al. 2009. Hypoxia-related processes in the Baltic Sea. Environmental Science and Technology 43: 3412–3420.

    Article  CAS  Google Scholar 

  • Díaz, R.J., and R. Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.

    Article  Google Scholar 

  • Dippner, J.W., G. Kornilovs, and K. Junker. 2012. A multivariate Baltic Sea environmental index. Ambio 41: 699–708.

    Article  CAS  Google Scholar 

  • Eero, M., B.R. MacKenzie, F.W. Köster, and H. Gislason. 2011. Multi-decadal responses of a cod (Gadus morhua) population to human-induced trophic changes, exploitation and climate variability. Ecological Applications 21: 214–226.

    Article  Google Scholar 

  • Eero, M. 2012. Reconstructing the population dynamics of sprat (Sprattus sprattus balticus) in the Baltic Sea in the 20th century. ICES Journal of Marine Science 69: 1010–1018.

    Article  Google Scholar 

  • Eilola, K., H.E.M. Meier, and E. Almroth. 2009. On the dynamics of oxygen, phosphorus and cyanobacteria in the Baltic Sea: A model study. Journal of Marine Systems 75: 163–184.

    Article  Google Scholar 

  • Elmgren, R. 1989. Man’s impact on the ecosystem of the Baltic Sea: Energy flows today and at the turn of the century. Ambio 18: 326–331.

    Google Scholar 

  • Elmgren, R. 2001. Understanding human impact on the Baltic Sea ecosystem: changing views in recent decades. Ambio 30: 222–231.

    Article  CAS  Google Scholar 

  • Elwertowski, J., M. Giedz, and J. Maciejczyk, 1974. Changes of fat content in Baltic sprat during the past 25 years. ICES CM Document H: 14.

  • Haddon, M. 2001. Modelling and quantitative methods in fisheries. Florida: Chapman & Hall/CRC.

    Google Scholar 

  • Hanson, J.M., and W.C. Leggett. 1982. Empirical prediction of fish biomass and yield. Canadian Journal of Fisheries and Aquatic Sciences 39: 257–263.

    Article  Google Scholar 

  • Hansson, S., O. Hjerne, C. Harvey, J.F. Kitchell, S.P. Cox, and T.E. Essington. 2007. Managing Baltic Sea fisheries under contrasting production and predation regimes: Ecosystem model analyses. Ambio 36: 265–271.

    Article  CAS  Google Scholar 

  • Hägg, H.E., S.W. Lyon, T. Wällstedt, C.-M. Mörth, B. Claremar, and C. Humborg. 2014. Future nutrient load scenarios for the Baltic Sea due to climate and lifestyle changes. Ambio 43: 337–351.

    Article  Google Scholar 

  • HELCOM. 2007. Baltic Sea action plan. Helsinki: HELCOM.

    Google Scholar 

  • Jansson, B.O., and K. Dahlberg. 1999. The environmental status of the Baltic Sea in the 1940s, today and in the future. Ambio 28: 312–319.

    Google Scholar 

  • Kemp, W.M., W.R. Boynton, J.E. Adolf, D.F. Boesch, W.C. Boicourt, G. Brush, J.C. Cornwell, T.R. Fisher, et al. 2005. Eutrophication of Chesapeake Bay: Historical trends and ecological interaction. Marine Ecology Progress Series 303: 1–29.

    Article  Google Scholar 

  • Kerr, S.R., and R.A. Ryder. 1992. Effects of cultural eutrophication on coastal marine fisheries: A comparative approach. In Marine coastal eutrophication: The response of marine transitional systems to human impact: Problems and perspectives for restoration: Proceedings of an international conference, ed. R.A. Vollenweider, R. Marchetti, and R. Viviani, 599–614. Amsterdam: Elsevier Science Publishers B.V.

    Google Scholar 

  • Knowler, D. 2007. Estimation of a stock–recruitment relationship for Black Sea anchovy (Engraulis encrasicolus) under the influence of nutrient enrichment and the invasive comb-jelly, Mnemiopsis leidyi. Fisheries Research 84: 275–281.

    Article  Google Scholar 

  • Kononen, K., and Å. Niemi. 1984. Long-term variation in the phytoplankton composition at the entrance to the Gulf of Finland. Ophelia 3: 101–110.

    Google Scholar 

  • Köster, F.W., C. Möllmann, S. Neuenfeldt, M. Vinther, M.A.S. John, J. Tomkiewicz, R. Voss, H.-H. Hinrichsen, et al. 2003. Fish stock development in the central Baltic Sea (1974–1999) in relation to variability in the environment. ICES Marine Science Symposia 219: 294–306.

    Google Scholar 

  • Lehmann, A., W. Krauss, and H.-H. Hinrichsen. 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 54: 299–316.

    Article  Google Scholar 

  • MacKenzie, B.R., H. Gislason, C. Möllmann, and F.W. Köster. 2007. Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Global Change Biology 13: 1348–1367.

    Article  Google Scholar 

  • Margonski, P., S. Hansson, M.T. Tomczak, and R. Grzebielec. 2010. Climate influence on Baltic cod, sprat, and herring stock–recruitment relationships. Progress in Oceanography 87: 277–288.

    Article  Google Scholar 

  • Massol, F., P. David, D. Gerdeaux, and P. Jarne. 2007. The influence of trophic status and large-scale climatic change on the structure of fish communities in Perialpine lakes. Journal of Animal Ecology 76: 538–551.

    Article  Google Scholar 

  • Mcowen, C.J., W.W.L. Cheung, R.R. Rykaczewski, R.A. Watson, and L.J. Wood. 2015. Is fisheries production within Large Marine Ecosystems determined by bottom-up or top-down forcing? Fish and Fisheries 16: 623–632.

    Article  Google Scholar 

  • Meier, H.E.M., R. Döscher, and T. Faxén. 2003. A multiprocessor coupled ice-ocean model for the Baltic Sea: Application to salt inflow. Journal of Geophysical Research 108: 3273.

    Article  Google Scholar 

  • Meier, H.E.M. 2007. Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuarine, Coastal and Shelf Science 74: 610–627.

    Article  Google Scholar 

  • Micheli, F. 1999. Eutrophication, fisheries, and consumer-resource dynamics in marine pelagic ecosystems. Science 285: 1396–1399.

    Article  CAS  Google Scholar 

  • Möllmann, C., G. Kornilovs, M. Fetter, and F.W. Köster. 2005. Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES Journal of Marine Science 62: 1270–1280.

    Article  Google Scholar 

  • Möllmann, C., G. Kornilovs, and L. Sidrevics. 2000. Long term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research 22: 2015–2038.

    Article  Google Scholar 

  • Nixon, S.W., and B.A. Buckley. 2002. “A strikingly rich zone”—Nutrient enrichment and secondary production in coastal marine ecosystems. Estuaries 25: 782–796.

    Article  Google Scholar 

  • Ojaveer, E. 2003. Baltic herring. In Fishes of Estonia, ed. E. Ojaveer, E. Pihu, and T. Saat, 58–79. Tallinn: Estonian Academy Publishers (in Estonian).

    Google Scholar 

  • Österblom, H., S. Hansson, U. Larsson, O. Hjerne, F. Wulff, R. Elmgren, and C. Folke. 2007. Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems 10: 887–889.

    Article  Google Scholar 

  • Ricker, W.E. 1954. Stock and recruitment. Journal of the Fisheries Research Board of Canada 11: 559–623.

    Article  Google Scholar 

  • Smith, V.H., G.D. Tilman, and J.C. Nekola. 1999. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution 100: 179–196.

    Article  CAS  Google Scholar 

  • Sommer, U., H. Stibor, A. Katechakis, F. Sommer, and T. Hansen. 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: Primary production. Hydrobiologia 484: 11–20.

    Article  Google Scholar 

  • Voss, R., M.A. Peck, H.-H. Hinrichsen, C. Clemmesen, H. Baumann, D. Stepputtis, M. Bernreuther, J.O. Schmidt, et al. 2012. Recruitment processes in Baltic sprat—A re-evaluation of GLOBEC Germany hypotheses. Progress in Oceanography 107: 61–79.

    Article  Google Scholar 

  • Ware, D.M., and R.E. Thomson. 2005. Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific. Science 308: 1280–1284.

    Article  CAS  Google Scholar 

  • Wulff, F., G. Aertebjerg, G. Nicolaus, Å. Niemi, P. Ciszewski, S. Sculz, and W. Kaiser. 1986. The changing pelagic ecosystem of the Baltic Sea. Ophelia 4: 299–319.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 266445 for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS) and resulted from the BONUS BIO-C3 project supported by BONUS (Art 185), funded jointly by the EU and Innovation Fund Denmark and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) (219-2013-2041). Support was also received by the Norden Top-level Research Initiative sub-programme “Effect Studies and Adaptation to Climate Change” through the Nordic Centre for Research on Marine Ecosystems and Resources under Climate Change (NorMER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margit Eero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eero, M., Andersson, H.C., Almroth-Rosell, E. et al. Has eutrophication promoted forage fish production in the Baltic Sea?. Ambio 45, 649–660 (2016). https://doi.org/10.1007/s13280-016-0788-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-016-0788-3

Keywords

Navigation