Skip to main content

Sustaining food self-sufficiency of a nation: The case of Sri Lankan rice production and related water and fertilizer demands


Rising human demand and climatic variability have created greater uncertainty regarding global food trade and its effects on the food security of nations. To reduce reliance on imported food, many countries have focused on increasing their domestic food production in recent years. With clear goals for the complete self-sufficiency of rice production, Sri Lanka provides an ideal case study for examining the projected growth in domestic rice supply, how this compares to future national demand, and what the associated impacts from water and fertilizer demands may be. Using national rice statistics and estimates of intensification, this study finds that improvements in rice production can feed 25.3 million Sri Lankans (compared to a projected population of 23.8 million people) by 2050. However, to achieve this growth, consumptive water use and nitrogen fertilizer application may need to increase by as much as 69 and 23 %, respectively. This assessment demonstrates that targets for maintaining self-sufficiency should better incorporate avenues for improving resource use efficiency.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  • Alexandratos, N., and J. Bruinsma. 2012. World agriculture towards 2030/2050: The 2012 revision. Rome: FAO.

    Google Scholar 

  • Amarasinghe, U.A., L. Mutuwatta, and R. Sakthivadivel. 1999. Water scarcity variations within a country: A case study of Sri Lanka. International Water Management Institute, Research Report 32, Colombo, Sri Lanka.

  • Amarasinghe, U.A., M. Samad, and M. Anputhas. 2005. Spatial clustering of rural poverty and food insecurity in Sri Lanka. Food Security 30: 493–509. doi:10.1016/j.foodpol.2005.09.006.

    Google Scholar 

  • Bruinsma, J. 2009. The resource outlook to 2050: By how much do land, water use and crop yields need to increase by 2050? Expert meeting on how to feed the world in 2050. Rome: FAO and ESDD. Retrieved October 20, 2014, from

  • Chapagain, A.K., and A.Y. Hoekstra. 2011. The blue, green and grey water footprint of rice production and consumption perspectives. Ecological Economics 70: 749–758. doi:10.1016/j.ecolecon.2010.11.012.

    Article  Google Scholar 

  • Chapagain, A.K., A.Y. Hoekstra, H.H.G. Savenije, and R. Gautam. 2006. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecological Economics 60: 186–203. doi:10.1016/j.ecolecon.2005.11.027.

    Article  Google Scholar 

  • Davis, K.F., P. D’Odorico, and M.C. Rulli. 2014. Moderating diets to feed the future. Earth’s Future 2: 559–565. doi:10.1002/2014EF000254.

    Article  Google Scholar 

  • DCS. 2014. Paddy Statistics. Agriculture and Environment Statistics Division. Retrieved March 6, 2014, from

  • DCS (Department of Census and Statistics). 2012. Census of Population and Housing2012. Retrieved March 6, 2014, from

  • De Silva, C.S., E.K. Weatherhead, J.W. Knox, and J.A. Rodriguez-Diaz. 2007. Predicting impacts of climate change—A case study of paddy irrigation water requirements in Sri Lanka. Agricultural Water Management 93: 19–29. doi:10.1016/j.agwat.2007.06.003.

    Article  Google Scholar 

  • Elser, J.J., T.J. Elser, S.R. Carpenter, and W.A. Brock. 2014. Regime shift in fertilizer commodities indicates more turbulence ahead for food security. PLoS ONE 9: e93998. doi:10.1371/journal.pone.0093998.

    Article  Google Scholar 

  • Fader, M., D. Gerten, M. Krause, W. Lucht, and W. Cramer. 2013. Spatial decoupling of agricultural production and consumption: Quantifying dependences of countries on food imports due to domestic land and water constraints. Environmental Research Letters 8: 014046. doi:10.1088/1748-9326/8/1/014046.

    Article  Google Scholar 

  • Falkenmark, M., and J. Rockström. 2006. The new blue and green water paradigm: Breaking new ground for water resources planning and management. Journal of Water Resources Planning and Management 132: 129–132. doi:10.1061/(ASCE)0733-9496(2006)132:3(129).

    Article  Google Scholar 

  • FAO. 2014a. FAOSTAT database. Retrieved May 14, 2014, from

  • FAO. 2014b. AQUASTAT database. Retrieved May 14, 2014, from

  • Fernando, A.P.S., A.M.S. Perera, and K. Karunagoda. 2010. Instability of paddy production and regional food insecurity in Sri Lanka. In Proceedings from national conference on water, food security and climate change in Sri Lanka, Vol. 1: Irrigation for food security, ed. P. Weligamage, G.G.A. Godaliyadda, and K. Jinapala, 33–45. Colombo (Sri Lanka): International Water Management Institute.

    Google Scholar 

  • Foley, J.A., N. Ramankutty, K.A. Brauman, E.S. Cassidy, J.S. Gerber, M. Johnston, N.D. Mueller, C. O’Connell, et al. 2011. Solutions for a cultivated planet. Nature 478: 337–342. doi:10.1038/nature10452.

    Article  CAS  Google Scholar 

  • Godaliyadda, G.G.A., K.R.P.M. Mullegamgoda, and A.M.U.B. Alahakoon. 1999. Some experiences on modernization in irrigation system rehabilitation in Sri Lanka. In Modernization of irrigation system operations: Proceedings of the 5th ITIS network international meeting, Aurangabad, 28–30 October 1998. Retrieved October 1, 2014, from

  • Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, et al. 2010. Food security: The challenge of feeding 9 billion people. Science 327: 813–818. doi:10.1126/science.1185383.

    Article  Google Scholar 

  • Grassini, P., K.M. Eskridge, and K.G. Cassman. 2013. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nature Communications 4: 2918. doi:10.1038/ncomms3918.

    Article  Google Scholar 

  • Gumma, M.K., A. Nelson, P.S. Thenkabail, and A.N. Singh. 2011. Mapping rice areas of South Asia using MODIS multitemporal data. Journal of Applied Remote Sensing 5: 053547. doi:10.1117/1.3619838.

    Article  Google Scholar 

  • Hoekstra, A., A. Chapagain, M. Aldaya, and M. Mekonnen. 2011. Water footprint assessment manual: Setting the global standard. Washington, DC: Earthscan.

    Google Scholar 

  • IIASA/FAO. 2012. Global Agro-ecological Zones (GAEZ v3.0). Laxenburg (Austria)/Rome: IIASA/FAO. Retrieved May 15, 2014, from

  • Imbulana, K.A.U.S, N.T.S. Wijesekera, and B. R. Neupane. 2006. Case study: Sri Lanka National Water Development Report, World Water Assessment Programme. Paris: UN-WWAP. Retrieved August 18, 2014, from

  • Intergovernmental Panel for Climate Change (IPCC). 2014. Fifth Assessment Report. Geneva: IPCC.

    Google Scholar 

  • Knox, J., T. Hess, A. Daccache, and T. Wheeler. 2012. Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters 7: 034032. doi:10.1088/1748-9326/7/3/034032.

    Article  Google Scholar 

  • Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Döll, B. Jimenez, K. Miller, T. Oki, Z. Şen, et al. 2008. The implications of projected climate change for freshwater resources and their management. Hydrological Sciences 53: 3–10. doi:10.1623/hysj.53.1.3.

    Article  Google Scholar 

  • Lobell, D.B., W. Schlenker, and J. Costa-Roberts. 2011. Climate trends and global crop production since 1980. Science 333: 616–620. doi:10.1126/science.1204531.

    Article  CAS  Google Scholar 

  • Mekonnen, M.M., and A.Y. Hoekstra. 2011. The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth Systems Science 15: 1577–1600. doi:10.5194/hess-15-1577-2011.

    Article  Google Scholar 

  • Meyer, J.L., M.J. Sale, P.J. Mulholland, and N.L. Poff. 1999. Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association 35: 1373–1386. doi:10.1111/j.1752-1688.1999.tb04222.x.

    Article  Google Scholar 

  • Mueller, N.D., J.S. Gerber, M. Johnston, D.K. Ray, N. Ramankutty, and J.A. Foley. 2012. Closing yield gaps through nutrient and water management. Nature 490: 254–257. doi:10.1038/nature11420.

    Article  CAS  Google Scholar 

  • Mueller, N.D., P.C. West, J.S. Gerber, G.K. MacDonald, S. Polasky, and J.A. Foley. 2014. A tradeoff frontier for global nitrogen use and cereal production. Environmental Research Letters 9: 054002. doi:10.1088/1748-9326/9/5/054002.

    Article  Google Scholar 

  • Namara, R.E., P. Weligamage, and R. Barker. 2004. Prospects for adopting system of rice intensification in Sri Lanka: A socioeconomic assessment. International Water Management Institute, Research Report 75, Colombo, Sri Lanka.

  • Nubin, W. 2002. Sri Lanka: Current issues and historical background. New York: Nova Science Publishers.

    Google Scholar 

  • Puma, M.J., S. Bose, S.Y. Chon, and B.I. Cook. 2015. Assessing the evolving fragility of the global food system. Environmental Research Letters 10: 024007. doi:10.1088/1748-9326/10/2/024007.

    Article  Google Scholar 

  • Ray, D.K., and J.A. Foley. 2013. Increasing global crop harvest frequency: Recent trends and future directions. Environmental Research Letters 8: 044041. doi:10.1088/1748-9326/8/4/044041.

    Article  Google Scholar 

  • Rittman, B.E., B. Mayer, P. Westerhoff, and M. Edwards. 2011. Capturing the lost phosphorus. Chemosphere 84: 846–853. doi:10.1016/j.chemosphere.2011.02.001.

    Article  Google Scholar 

  • Suweis, S., A. Rinaldo, A. Maritan, and P. D’Odorico. 2013. Water-controlled wealth of nations. Proceedings of the National Academy of Sciences of the United States of America 110: 4230–4233. doi:10.1073/pnas.1222452110.

    Article  CAS  Google Scholar 

  • Suweis, S., J.A. Carr, A. Maritan, A. Rinaldo, and P. D’Odorico. 2015. Resilience and reactivity of global food security. Proceedings of the National Academy of Sciences of the United States of America 112: 6902–6907. doi:10.1073/pnas.1507366112.

    Article  CAS  Google Scholar 

  • UN. 2012. World Population Prospects: The 2012 Revision. Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. Retrieved April 18, 2014, from

  • Weerahewa, J., S.S. Kodithuwakku, and A. Ariyawardana. 2010. The Fertilizer Subsidy Program in Sri Lanka. In Food policy for developing countries: Case studies, ed. P. Pinstrup-Andersen and F. Cheng. Ithaca: Cornell University. Retrieved August 26, 2014, from

  • Weerakoon, W.M.W., M.M.P. Mutunayake, C. Bandara, A.N. Rao, D.C. Bhandari, and J.K. Ladha. 2011. Direct-seeded rice culture in Sri Lanka: Lessons from farmers. Field Crops Research. 121: 53–63. doi:10.1016/j.fcr.2010.11.009.

    Article  Google Scholar 

Download references


We thank Paolo D’Odorico, George M. Hornberger, and Michael L. Pace for their useful insights during the preparation of this manuscript. We also thank Nathaniel Mueller for kindly providing data on irrigated area and nitrogen application rates. This study was funded by the National Science Foundation (Grant no. DGE-00809128, DGE-0909667, and EAR-1204685).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kyle Frankel Davis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 127 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davis, K.F., Gephart, J.A. & Gunda, T. Sustaining food self-sufficiency of a nation: The case of Sri Lankan rice production and related water and fertilizer demands. Ambio 45, 302–312 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Self-sufficiency
  • Food security
  • Agricultural intensification
  • Water footprint
  • Nitrogen runoff
  • Water resources