Advertisement

Ambio

, Volume 45, Issue 2, pp 205–214 | Cite as

Morphological abnormalities in gonads of the Baltic herring (Clupea harengus membras): Description of types and prevalence in the northern Baltic Sea

  • Marjut Rajasilta
  • Mikael Elfving
  • Jari Hänninen
  • Päivi Laine
  • Ilppo Vuorinen
  • Jorma Paranko
Report
  • 147 Downloads

Abstract

Due to heavy anthropogenic influence and variation of the environmental conditions in the Baltic Sea, reproductive disorders are becoming a major environmental concern. We show here an increasing prevalence of gonadal malformations in the Baltic herring (Clupea harengus membras), a key species of the Baltic ecosystem and important in commercial fishery. During 1987–2014, the spawning herring population in the Archipelago Sea (AS) (North Baltic Sea, Finland) was monitored annually and analyzed for gross morphology of the gonads [total number (n) of analyzed fish = 38 284]. Four different types of malformations were repeatedly found and named as asymmetric, rudimentary, segmented, and branched gonads, but also hermaphroditic gonads and miscellaneous (unidentified) disorders were recorded. In 2013, additional samplings (n of fish analyzed = 541) showed similar malformations in herring from the Bothnian Sea. In some gonad types, histological examination revealed disintegration of seminiferous tubules and hyperplasia of the interstitial tissue. In 2014, the overall prevalence of malformations was still relatively low in the AS (frequency = 0–3.4 %; n = 750) and had apparently minimal effect on population recruitment. However, an increasing trend in the time-series (GLM; F = 32.65; p < 0.001) and a significantly higher prevalence in the Bothnian Sea (frequency = 0.7–5.0 %; n = 541; χ 2 = 6.24; p < 0.05) suggest that gonadal malformations may become a new threat for fish in the Baltic Sea. The observed gonad atrophies may be due to environmental endocrine disruption; however, also other explanations may exist and potential explanations are discussed.

Keywords

Herring Gonads Malformation Baltic Sea Reproduction 

Notes

Acknowledgments

Our thanks are due to Jan Eklund for reading the ages of herring and colleagues assisting in the basic treatment of fish samples and especially to the fishermen, who provided the fish samples over the years. Financial support for the work has been obtained from the Ministry of Agriculture and Forestry in Finland, the European Union (96-068), Turku University Foundation, and Jenny and Antti Wihuri Foundation. Dr. Robert Badeau from Aura Professional English Consulting, LTD, (www.auraenglish.com) is acknowledged for the language content editing of the manuscript.

References

  1. Airaksinen, R., A. Hallikainen, P. Rantakokko, P. Ruokojärvi, P.J. Vuorinen, R. Parmanne, M. Verta, J. Mannio, et al. 2014. Time trends and congener profiles of PCDD/Fs, PCBs, and PBDEs in Baltic herring off the coast of Finland during 1978–2009. Chemosphere 114: 165–171.CrossRefGoogle Scholar
  2. Aneer, G. 1987. High natural mortality of Baltic herring (Clupea harengus) eggs caused by algal exudates? Marine Biology 94: 163–169.CrossRefGoogle Scholar
  3. Arukwe, A., and A. Goksøyr. 2003. Eggshell and egg yolk protein in fish: Hepatic proteins for the next generation: Oogenetic, population, and evolutionary implications of endocrine disruption. Comparative Hepatology 2: 1–21.CrossRefGoogle Scholar
  4. Bagenal, T.B., and E. Braum. 1971. Eggs and early life history. In Methods for assessment of fish production in fresh waters. IBP handbook No 3, ed. W.E. Ricker, 166–198. Oxford: Blackwell Scientific Publications.Google Scholar
  5. Barton, B.A., and G.K. Iwama. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of the corticosteroids. Annual Review of Fish Diseases 1: 3–26.CrossRefGoogle Scholar
  6. Bengtsson, B.-E., C. Hill, Å. Bergman, I. Brandt, N. Johansson, C. Magnhagen, A. Södergren, and J. Thulin. 1999. Reproductive disturbances in Baltic fish: A synopsis of the FiRe project. Ambio 28: 2–8.Google Scholar
  7. Bernet, D., T. Wahli, C. Kueng, and H. Segner. 2004. Frequent and unexplained gonadal abnormalities in whitefish (central alpine Coregonus sp.) from an alpine oligotrophic lake in Switzerland. Diseases of Aquatic Organisms 61: 137–148.CrossRefGoogle Scholar
  8. Bernet, D., A. Liedtke, D. Bittner, R.I.L. Eggen, S. Kipfer, C. Küng, C.R. Largiader, M.J.-F. Suter, et al. 2008. Gonadal malformations in whitefish from Lake Thun: Defining the case and evaluating the role of EDCs. Chimia 62: 383–388.CrossRefGoogle Scholar
  9. Billard, R., C. Bry, and C. Gillet. 1981. Stress, environment and reproduction in teleost fish. In Stress and fish, ed. A.D. Pickering, 185–208. London: Academic Press.Google Scholar
  10. Breitholtz, M., C. Hill, and B.-E. Bengtsson. 2001. Toxic substances and reproductive disorders in Baltic fish and crustaceans. Ambio 30: 210–216.CrossRefGoogle Scholar
  11. Bucholtz, R.H., J. Tomkiewicz, and J. Dalskov. 2008. Manual to determine gonadal maturity of herring (Clupea harengus L.). DTU Aqua-report 197-08. Charlottenlund: National Institute of Aquatic Resources.Google Scholar
  12. Coady, K.K., M.B. Murphy, D.L. Villeneuve, M. Hecker, P.D. Jones, J.A. Carr, K.R. Solomon, E.E. Smith, et al. 2005. Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis. Ecotoxicology and Environmental Safety 62: 160–173.CrossRefGoogle Scholar
  13. Colborn, T., F.S. von Saal, and A.M. Soto. 1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environmental Health Perspectives 101: 378–384.CrossRefGoogle Scholar
  14. DeFalco, T., and B. Capel. 2009. Gonad morphogenesis in vertebrates: Divergent means to a convergent end. Annual Review of Cell and Developmental Biology 25: 457–482.CrossRefGoogle Scholar
  15. European Union. 2008. Directive 2008/56/EC of the European Parliament and of the Council, 17.6.2008, establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive). Official Journal of the European Union L 164/19.Google Scholar
  16. Gadd, T., M. Jakava-Viljanen, H. Tapiovaara, P. Koski, and L. Sihvonen. 2011. Epidemiological aspects of viral haemorrhagic septicaemia virus genotype II isolated from Baltic herring, Clupea harengus membras L. Journal of Fish Diseases 34: 517–529.CrossRefGoogle Scholar
  17. Gercken, J., L. Förlin, and J. Andersson. 2006. Developmental disorders in larvae of eelpout (Zoarces viviparus) from German and Swedish Baltic coastal waters. Marine Pollution Bulletin 53: 497–507.CrossRefGoogle Scholar
  18. Guillette Jr., L.J., D.A. Crain, M.P. Gunderson, S.A.E. Kools, M.R. Milnes, E.F. Orlando, A.A. Rooney, and A.R. Woodward. 2000. Alligators and endocrine disrupting contaminants: A current perspective. American Zoologist 40: 438–452.Google Scholar
  19. Hecker, M., M.B. Murphy, K.K. Coady, D.L. Villeneuve, P.D. Jones, J.A. Carr, K.R. Solomon, E.E. Smith, et al. 2006. Terminology of gonadal anomalies in fish and amphibians resulting from chemical exposures. Review of Environmental Contamination and Toxicology 187: 103–131.Google Scholar
  20. HELCOM. 2004. Dioxins in the Baltic Sea. Report of the Helsinki Commission—Baltic Marine Environment Protection Commission, 19 pp.Google Scholar
  21. HELCOM. 2007. Climate change in the Baltic Sea area—HELCOM Thematic Assessment in 2007. In Baltic Sea Environment Proceedings No. 111. Google Scholar
  22. HELCOM. 2010. Hazardous substances in the Baltic Sea—An integrated thematic assessment of hazardous substances in the Baltic Sea. In Baltic Sea Environment Proceedings No. 120B.Google Scholar
  23. Henderson, A.C., A.J. Reeve, and A. Ambu-Ali. 2014. Microanatomy of the male and female reproductive tracts in the long-tailed butterfly ray Gymnura poecilura, an elasmobranch with unusual characteristics. Journal of Fish Biology 84: 297–313.CrossRefGoogle Scholar
  24. Herrmann, J., G. Kanisch, and S. P. Nielsen. 2013. Radioactive substances—137Cs in fish and surface waters. HELCOM Core Indicator Report. Online: http://www.helcom.fi/Core%20Indicators/HELCOM_CoreIndicator_Radioactivesubstances.pdf
  25. Hänninen, J., and I. Vuorinen. 2015. Riverine tot-P loading and seawater concentrations in the Baltic Sea during the 1970s to 2000—transfer function modeling based on the total runoff. Environmental Monitoring and Assessment 187: 343.Google Scholar
  26. Hänninen, J., I. Vuorinen, and P. Hjelt. 2000. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnology and Oceanography 45: 703–710.CrossRefGoogle Scholar
  27. Kääriä, J., M. Naarminen, J. Eklund, N. Jönsson, G. Aneer, and M. Rajasilta. 2001. A tagging experiment on spring-spawning Baltic herring (Clupea harengus membras) in southwest Finland in 1990-1998. In Herring: Expectations for a new millennium, ed. F. Funk, J. Blackburn, D. Hay, A.J. Paul, R. Stephenson, R Toresen, and D. Witherell, 599–609. Alaska Sea Grant College Program AK-SG-01-04, 2001.Google Scholar
  28. Laine, P. 2003. Regulation of reproductive success in Baltic herring (Clupea harengus membras): Individual effort meets the environment. Annales Universitatis Turkuensis, Ser. AII. TOM. 166. PhD Thesis. University of Turku.Google Scholar
  29. Lehtonen, K.K., D. Schiedek, A. Köhler, T. Lang, P.J. Vuorinen, L. Förlin, J. Baršiene, J. Pempkowiak, et al. 2006. The BEEP project in the Baltic Sea: Overview of results and outline for a regional biological effects monitoring strategy. Marine Pollution Bulletin 53: 523–537.CrossRefGoogle Scholar
  30. Lindegren, M., Ö. Östman, and A. Gårdmark. 2011. Interacting trophic forcing and the population dynamics of herring. Ecology 92: 1407–1413.CrossRefGoogle Scholar
  31. Marmon, S.K., P. Liljelind, and I. Undeland. 2009. Removal of lipids, dioxins, and polychlorinated biphenyls during production of protein isolates from Baltic herring (Clupea harengus) using pH-shift processes. Journal of Agricultural and Food Chemistry 57: 7819–7825.CrossRefGoogle Scholar
  32. Möllmann, C., G. Kornilovs, M. Fetter, and F.W. Köster. 2005. Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES Journal of Marine Science 62: 1270–1280.CrossRefGoogle Scholar
  33. Omotosho, J.S. 1987. Abnormal development in the ovaries of Oreochromis niloticus Linn (Perciformes: Cichlidae) in Nigeria. Revista de Biologia Tropical 35: 83–85.Google Scholar
  34. Parenti, L.R., and H.J. Grier. 2004. Evolution and phylogeny of gonad morphology in bony fishes. Integrative and Comparative Biology 44: 333–348.CrossRefGoogle Scholar
  35. Pulliainen, E., K. Korhonen, L. Kankaanranta, and K. Mäki. 1992. Non-spawning burbot on the northern coast of the Bothnian Bay. Ambio 21: 170–175.Google Scholar
  36. Rajasilta, M., J. Eklund, J. Kääriä, and K. Ranta-aho. 1989. The deposition and mortality of the eggs of the Baltic herring, Clupea harengus membras L., on different substrates in the south-western archipelago of Finland. Journal of Fish Biology 34: 417–427.CrossRefGoogle Scholar
  37. Rajasilta, M., J. Eklund, N. Jönsson, T. Lorenz, and P. Laine. 1999. Intensive monitoring of spawning populations of the Baltic herring (Clupea harengus membras L.). Study Report EU 96-068. Archipelago Research Institute, University of Turku. Online: http://www.utu.fi/fi/yksikot/tyyk/saaristomeren-tutkimuslaitos/tutkimus/Documents/seili3.pdf.
  38. Rajasilta, M., J. Eklund, J. Hänninen, I. Vuorinen, and P. Laine. 2015. Female Baltic herring Clupea harengus allocate resources from growth to reproduction in poor feeding conditions. Journal of Fish Biology 86: 575–591.CrossRefGoogle Scholar
  39. Reno, P.W. 1998. Factors involved in the dissemination of disease in fish populations. Journal of Aquatic Animal Health 10: 160–171.CrossRefGoogle Scholar
  40. Rönkkönen, S., E. Ojaveer, T. Raid, and M. Viitasalo. 2004. Long-term changes in Baltic herring (Clupea harengus membras) growth in the Gulf of Finland. Canadian Journal of Fisheries and Aquatic Science 61: 219–229.CrossRefGoogle Scholar
  41. Sadovy, Y., and D.Y. Shapiro. 1987. Criteria for the diagnosis of hermaphroditism in fishes. Copeia 1987: 136–156.CrossRefGoogle Scholar
  42. Sjöblom, V. 1961. Wanderungen des Strömlings (Clupea harengus L.) in einigen Schären- und Hochseegebieten der Nördlichen Ostsee. Annales Zoologici Soc ‘Vanamo’ TOM. 23. PhD Thesis. University of Helsinki.Google Scholar
  43. van Damme, C.J.G., M. Dickey-Collas, A.D. Rijnsdorp, and O.S. Kjesbu. 2009. Fecundity, atresia, and spawning strategies of Atlantic herring (Clupea harengus). Canadian Journal of Fisheries and Aquatic Science 66: 2130–2141.CrossRefGoogle Scholar
  44. Vuorinen, I., J. Hänninen, M. Rajasilta, P. Laine, J. Eklund, F. Montesino-Pouzols, F. Corona, K. Junker, et al. 2015. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas—implications for environmental monitoring. Ecological Indicators 50: 196–205.CrossRefGoogle Scholar
  45. Westernhagen, H.V., V. Dethlefsen, P. Cameron, J. Berg, and G. Fürstenberg. 1988. Developmental defects in pelagic fish embryos from the western Baltic. Helgoländer Meeresuntersuchungen 42: 13–36.CrossRefGoogle Scholar
  46. Wiklund, T., L. Lounasheimo, J. Lom, and G. Bylund. 1996. Gonadal impairment in roach Rutilus rutilus from Finnish coastal areas of the northern Baltic Sea. Diseases of Aquatic Organisms 26: 163–171.CrossRefGoogle Scholar
  47. Wootton, R.J., and C. Smith. 2015. Reproductive biology of teleost fishes. Oxford: Wiley-Blackwell.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2015

Authors and Affiliations

  • Marjut Rajasilta
    • 1
  • Mikael Elfving
    • 1
  • Jari Hänninen
    • 1
  • Päivi Laine
    • 1
  • Ilppo Vuorinen
    • 3
  • Jorma Paranko
    • 2
  1. 1.Archipelago Research InstituteUniversity of TurkuTurkuFinland
  2. 2.Department of Cell Biology and Anatomy, Institute of BiomedicineUniversity of TurkuTurkuFinland
  3. 3.Centre for Environmental ResearchUniversity of TurkuTurkuFinland

Personalised recommendations