Skip to main content

Advertisement

Log in

Protected areas’ role in climate-change mitigation

  • Report
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Globally, 15.5 million km2 of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC’s Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km2 of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Avetisyan, M., U.L. Baldos, and T. Hertel. 2011. Development of the GTAP Version 7 Land Use Data Base. GTAP Research Memorandum No. 19, Purdue University. https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=3426.

  • Ballantyne, A.P., R. Andres, R. Houghton, B.D. Stocker, R. Wanninkhof, W. Anderegg, L.A. Cooper, M. DeGrandpre, et al. 2015. Audit of the global carbon budget: Estimate errors and their impacts on uptake uncertainty. Biogeosciences 12: 2565–2584. doi:10.5194/bg-12-2565-2015.

    Article  Google Scholar 

  • Brown, P., B. Cabarle, and R. Livernash. 1997. Carbon counts: Estimating climate change mitigation in forestry projects, 25 pp. Washington, DC: World Resources Institute.

  • Campbell, A., L. Miles, I. Lysenko, A. Hughes, and H. Gibbs. 2008. Carbon storage in protected areas. Technical Report. UNEP World Conservation Monitoring Centre, Cambridge.

  • CBD. 2012. Convention on biological diversity: Aichi biodiversity targets. http://www.cbd.int/sp/targets/.

  • Coetzee, B.W.T., K.J. Gaston, and S.L. Chown. 2014. Local scale comparisons of biodiversity as a test for global protected area ecological performance: A meta-analysis. PLoS ONE 9: e105824. doi:10.1371/journal.pone.0105824.

    Article  Google Scholar 

  • Costa, P.M., M. Stuart, M. Pinard, and G. Phillips. 2000. Elements of a certification system for forestry-based carbon offset projects. Mitigation and Adaptation Strategies for Global Change 5: 39–50. doi:10.1023/A:1009656501414.

    Article  Google Scholar 

  • Daily, G.C., and P.A. Matson. 2008. Ecosystem services: From theory to implementation. Proceedings of the National Academy of Sciences of the United States of America 105: 9455–9456. doi:10.1073/pnas.0804960105.

    Article  CAS  Google Scholar 

  • Felzer, B., J.M. Reilly, J.M. Melillo, D.W. Kicklighter, M. Sarofim, C. Wang, R. Prinn, and Q. Zhuang. 2005. Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climatic Change 73: 345–373. doi:10.1007/s10584-005-6776-4.

    Article  CAS  Google Scholar 

  • Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis. 1983. Efficient three-dimensional global models for climate studies: Models I and II. Monthly Weather Review 111: 609–662.

    Article  Google Scholar 

  • Hertel, T.W., S. Rose, and R. Tol (eds.). 2009. Economic analysis of land use in global climate change policy. Abingdon: Routledge.

    Google Scholar 

  • Hurtt, G.C., S. Frolking, M.G. Fearon, B. Moore, E. Shevliakova, S. Malyshev, S.W. Pacala, and R.A. Houghton. 2006. The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biology 12: 1208–1229. doi:10.1111/j.1365-2486.2006.01150.x.

    Article  Google Scholar 

  • Hurtt, G.C., L.P. Chini, S. Frolking, R.A. Betts, J. Feddema, G. Fischer, J.P. Fisk, K. Hibbard, et al. 2011. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109: 117–161. doi:10.1007/s10584-011-0153-2.

    Article  Google Scholar 

  • IUCN-UNEP. 2009. The World Database on Protected Areas (WDPA). Cambridge: UNEP-WCMC.

    Google Scholar 

  • Jenkins, C.N., and L. Joppa. 2009. Expansion of the global terrestrial protected area system. Biological Conservation 142: 2166–2174. doi:10.1016/j.biocon.2009.04.016.

    Article  Google Scholar 

  • Kintisch, E. 2009. Deforestation moves to the fore in Copenhagen. Science 326: 1465. doi:10.1126/science.326.5959.1465.

    Article  CAS  Google Scholar 

  • Le Quéré, C., G.P. Peters, R.J. Andres, R.M. Andrew, T.A. Boden, P. Ciais, P. Friedlingstein, R.A. Houghton, et al. 2014. Global carbon budget 2013. Earth System Science Data 6: 235–263. doi:10.5194/essd-6-235-2014.

    Article  Google Scholar 

  • Leroux, S.J., M.A. Krawchuk, F. Schmiegelow, S.G. Cumming, K. Lisgo, L.G. Anderson, and M. Petkova. 2010. Global protected areas and IUCN designations: Do the categories match the conditions? Biological Conservation 143: 609–616. doi:10.1016/j.biocon.2009.11.018.

    Article  Google Scholar 

  • Margono, B.A., P.V. Potapov, S. Turubanpova, F. Stolle, and M.C. Hansen. 2014. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change 4: 730–735. doi:10.1038/nclimate2277.

    Article  Google Scholar 

  • Mayer, M., C. Wang, M. Webster, and R.G. Prinn. 2000. Linking local air pollution to global chemistry and climate. Journal of Geophysical Research 105: 22869–22896.

    Article  CAS  Google Scholar 

  • McGuire, A.D., S. Sitch, J.S. Clein, R. Dargaville, G. Esser, J. Foley, M. Heimann, F. Joos, et al. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15: 183–206. doi:10.1029/2000GB001298.

    Article  CAS  Google Scholar 

  • Melillo, J.M., D. McGuire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty, and A.L. Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363: 234–240. doi:10.1007/BF01091852.

    Article  CAS  Google Scholar 

  • Melillo, J.M., I.C. Prentice, G.D. Farquhar, E.-D. Schulze, and O. Sala. 1996. Terrestrial ecosystems: Biotic feedbacks to climate. In Climate Change 1995: The IPCC Assessment, ed. J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Hairns, A. Kattenberg, and K. Maskell, 444–481. Cambridge: Cambridge University Press.

    Google Scholar 

  • Melillo, J.M., J.M. Reilly, D.W. Kicklighter, A.C. Gurgel, T.W. Cronin, S. Paltsev, B.S. Felzer, X. Wang, et al. 2009. Indirect emissions from biofuels: How important? Science 326: 1397–1399. doi:10.1126/science.1180251.

    Article  CAS  Google Scholar 

  • Melillo, J.M., S. Butler, J. Johnson, J. Mohan, P. Steudler, H. Lux, E. Burrows, F. Bowles, et al. 2011. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America 108: 9508–9512. doi:10.1073/pnas.1018189108.

    Article  CAS  Google Scholar 

  • Mitchell, T., T.R. Carter, P. Jones, and M. Hulme. 2004. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55.

  • Narayanan, B.G., and T.L. Walmsley. 2008. Global trade, assistance, and production: The GTAP 7 database. West Lafayette, IN: Center for Global Trade Analysis, Purdue University.

    Google Scholar 

  • Pan, Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, A. Shvidenko, et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333: 988–993. doi:10.1126/science.1201609.

    Article  CAS  Google Scholar 

  • Pregitzer, K.S., and E.S. Euskirchen. 2004. Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology 10: 2052–2077. doi:10.1111/j.1365-2486.2004.00866.x.

    Article  Google Scholar 

  • Prinn, R., H. Jacoby, A. Sokolov, C. Wang, X. Xiao, Z. Yang, R. Eckhaus, P. Stone, et al. 1999. Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies. Climatic Change 41: 469–546.

    Article  CAS  Google Scholar 

  • Reilly, J.M., J.M. Melillo, Y. Cai, D.W. Kicklighter, A.C. Gurgel, S. Paltsev, T.W. Cronin, A. Sokolov, et al. 2012. Using land to mitigate climate change: Hitting the target, recognizing the tradeoffs. Environmental Science and Technology 46: 5672–5679.

    Article  CAS  Google Scholar 

  • Ricketts, T.H., B. Soares-Filho, G.A.B. da Fonseca, D. Nepstad, A. Pfaff, A. Petsonk, A. Anderson, D. Boucher, et al. 2010. Indigenous lands, protected areas, and slowing climate change. PLoS Biology 8: e1000331. doi:10.1371/journal.pbio.1000331.

    Article  Google Scholar 

  • Schimel, D., B.B. Stephens, and J.B. Fisher. 2015. Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America 112: 436–441. doi:10.1073/pnas.1407302112.

    Article  CAS  Google Scholar 

  • Schlosser, C.A., D. Kicklighter, and A. Sokolov. 2007. A global land system framework for integrated climate-change assessments. MIT Joint Program for the Science and Policy of Global Change. Report 147. Massachusetts Institute of Technology, Cambridge. http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt147.pdf.

  • Soares-Filho, B.S., D.C. Nepstad, L.M. Curran, G.C. Cerqueira, R.A. Garcia, C.A. Ramos, E. Voll, A. McDonald, et al. 2006. Modelling conservation in the Amazon basin. Nature 440: 520–523. doi:10.1038/nature04389.

    Article  CAS  Google Scholar 

  • Soares-Filho, B., P. Moutinho, D. Nepstad, A. Anderson, H. Rodrigues, R. Garcia, L. Dietzsch, F. Merry, et al. 2010. Role of Brazilian Amazon protected areas in climate change mitigation. Proceedings of the National Academy of Sciences of the United States of America 107: 10821–10826. doi:10.1073/pnas.0913048107.

    Article  CAS  Google Scholar 

  • Sokolov, A., and P.H. Stone. 1998. A flexible climate model for use in integrated assessments. Climate Dynamics 14: 291–303. doi:10.1007/s003820050224.

    Article  Google Scholar 

  • Sokolov, A.P., C.A. Schlosser, S. Dutkiewicz, S. Paltsev, D.W. Kicklighter, H.D. Jacoby, R.G. Prinn, C.E. Forest, et al. 2005. The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation. MIT Joint Program for the Science and Policy of Global Change Report 124. Massachusetts Institute of Technology, Cambridge. http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt124.pdf.

  • Sokolov, A.P., D.W. Kicklighter, J.M. Melillo, B.S. Felzer, C.A. Schlosser, and T.W. Cronin. 2008. Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate 21: 3776–3796. doi:10.1175/2008JCLI2038.1.

    Article  Google Scholar 

  • Tian, H., J.M. Melillo, D.W. Kicklighter, S. Pan, J. Liu, A.D. McGuire, and B. Moore III. 2003. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global and Planetary Change 37: 201–217. doi:10.1016/S0921-8181(02)00205-9.

    Google Scholar 

  • UN. 2015. World population prospects: The 2015 revision, key findings and advance tables. Working Paper No. ESA/P/WP.241. United Nations, Department of Economic and Social Affairs, Population Division, New York.

  • Vistconte, P., M. Di Marco, J.G. Alvarez-Romero, S.R. Januchowski-Hartley, R.L. Pressey, R. Weeks, and C. Rondinini. 2013. Effects of errors and gaps in spatial data sets on assessment of conservation progress. Conservation Biology 27: 1000–1010. doi:10.1111/cobi.12095.

    Article  Google Scholar 

  • Wang, C., R.G. Prinn, and A. Sokolov. 1998. A global interactive chemistry and climate model: Formulation and testing. Journal of Geophysical Research 103: 3399–3418.

    Article  CAS  Google Scholar 

  • Wang, X. 2008. Impacts of greenhouse gas mitigation policies on agricultural land. PhD Thesis. Cambridge, Massachusetts Institute of Technology.

  • Watson, J.E.M., N. Dudley, D.B. Segan, and M. Hockings. 2014. The performance and potential of protected areas. Nature 515: 67–73. doi:10.1038/nature13947.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the David and Lucile Packard Foundation, National Science Foundation grant 1027955, US EPA grant XA-83600001-1, and US DOE grant DE-FG02-94ER61937.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry M. Melillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 638 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melillo, J.M., Lu, X., Kicklighter, D.W. et al. Protected areas’ role in climate-change mitigation. Ambio 45, 133–145 (2016). https://doi.org/10.1007/s13280-015-0693-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-015-0693-1

Keywords

Navigation