Ambio

, Volume 45, Issue 2, pp 133–145 | Cite as

Protected areas’ role in climate-change mitigation

  • Jerry M. Melillo
  • Xiaoliang Lu
  • David W. Kicklighter
  • John M. Reilly
  • Yongxia Cai
  • Andrei P. Sokolov
Report

Abstract

Globally, 15.5 million km2 of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC’s Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km2 of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.

Keywords

Protected areas Global carbon cycle Carbon sequestration Mitigation Climate change 

Supplementary material

13280_2015_693_MOESM1_ESM.pdf (637 kb)
Supplementary material 1 (PDF 638 kb)

References

  1. Avetisyan, M., U.L. Baldos, and T. Hertel. 2011. Development of the GTAP Version 7 Land Use Data Base. GTAP Research Memorandum No. 19, Purdue University. https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=3426.
  2. Ballantyne, A.P., R. Andres, R. Houghton, B.D. Stocker, R. Wanninkhof, W. Anderegg, L.A. Cooper, M. DeGrandpre, et al. 2015. Audit of the global carbon budget: Estimate errors and their impacts on uptake uncertainty. Biogeosciences 12: 2565–2584. doi:10.5194/bg-12-2565-2015.CrossRefGoogle Scholar
  3. Brown, P., B. Cabarle, and R. Livernash. 1997. Carbon counts: Estimating climate change mitigation in forestry projects, 25 pp. Washington, DC: World Resources Institute.Google Scholar
  4. Campbell, A., L. Miles, I. Lysenko, A. Hughes, and H. Gibbs. 2008. Carbon storage in protected areas. Technical Report. UNEP World Conservation Monitoring Centre, Cambridge.Google Scholar
  5. CBD. 2012. Convention on biological diversity: Aichi biodiversity targets. http://www.cbd.int/sp/targets/.
  6. Coetzee, B.W.T., K.J. Gaston, and S.L. Chown. 2014. Local scale comparisons of biodiversity as a test for global protected area ecological performance: A meta-analysis. PLoS ONE 9: e105824. doi:10.1371/journal.pone.0105824.CrossRefGoogle Scholar
  7. Costa, P.M., M. Stuart, M. Pinard, and G. Phillips. 2000. Elements of a certification system for forestry-based carbon offset projects. Mitigation and Adaptation Strategies for Global Change 5: 39–50. doi:10.1023/A:1009656501414.CrossRefGoogle Scholar
  8. Daily, G.C., and P.A. Matson. 2008. Ecosystem services: From theory to implementation. Proceedings of the National Academy of Sciences of the United States of America 105: 9455–9456. doi:10.1073/pnas.0804960105.CrossRefGoogle Scholar
  9. Felzer, B., J.M. Reilly, J.M. Melillo, D.W. Kicklighter, M. Sarofim, C. Wang, R. Prinn, and Q. Zhuang. 2005. Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climatic Change 73: 345–373. doi:10.1007/s10584-005-6776-4.CrossRefGoogle Scholar
  10. Hansen, J., G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy, and L. Travis. 1983. Efficient three-dimensional global models for climate studies: Models I and II. Monthly Weather Review 111: 609–662.CrossRefGoogle Scholar
  11. Hertel, T.W., S. Rose, and R. Tol (eds.). 2009. Economic analysis of land use in global climate change policy. Abingdon: Routledge.Google Scholar
  12. Hurtt, G.C., S. Frolking, M.G. Fearon, B. Moore, E. Shevliakova, S. Malyshev, S.W. Pacala, and R.A. Houghton. 2006. The underpinnings of land-use history: Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Global Change Biology 12: 1208–1229. doi:10.1111/j.1365-2486.2006.01150.x.CrossRefGoogle Scholar
  13. Hurtt, G.C., L.P. Chini, S. Frolking, R.A. Betts, J. Feddema, G. Fischer, J.P. Fisk, K. Hibbard, et al. 2011. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109: 117–161. doi:10.1007/s10584-011-0153-2.CrossRefGoogle Scholar
  14. IUCN-UNEP. 2009. The World Database on Protected Areas (WDPA). Cambridge: UNEP-WCMC.Google Scholar
  15. Jenkins, C.N., and L. Joppa. 2009. Expansion of the global terrestrial protected area system. Biological Conservation 142: 2166–2174. doi:10.1016/j.biocon.2009.04.016.CrossRefGoogle Scholar
  16. Kintisch, E. 2009. Deforestation moves to the fore in Copenhagen. Science 326: 1465. doi:10.1126/science.326.5959.1465.CrossRefGoogle Scholar
  17. Le Quéré, C., G.P. Peters, R.J. Andres, R.M. Andrew, T.A. Boden, P. Ciais, P. Friedlingstein, R.A. Houghton, et al. 2014. Global carbon budget 2013. Earth System Science Data 6: 235–263. doi:10.5194/essd-6-235-2014.CrossRefGoogle Scholar
  18. Leroux, S.J., M.A. Krawchuk, F. Schmiegelow, S.G. Cumming, K. Lisgo, L.G. Anderson, and M. Petkova. 2010. Global protected areas and IUCN designations: Do the categories match the conditions? Biological Conservation 143: 609–616. doi:10.1016/j.biocon.2009.11.018.CrossRefGoogle Scholar
  19. Margono, B.A., P.V. Potapov, S. Turubanpova, F. Stolle, and M.C. Hansen. 2014. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change 4: 730–735. doi:10.1038/nclimate2277.CrossRefGoogle Scholar
  20. Mayer, M., C. Wang, M. Webster, and R.G. Prinn. 2000. Linking local air pollution to global chemistry and climate. Journal of Geophysical Research 105: 22869–22896.CrossRefGoogle Scholar
  21. McGuire, A.D., S. Sitch, J.S. Clein, R. Dargaville, G. Esser, J. Foley, M. Heimann, F. Joos, et al. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles 15: 183–206. doi:10.1029/2000GB001298.CrossRefGoogle Scholar
  22. Melillo, J.M., D. McGuire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty, and A.L. Schloss. 1993. Global climate change and terrestrial net primary production. Nature 363: 234–240. doi:10.1007/BF01091852.CrossRefGoogle Scholar
  23. Melillo, J.M., I.C. Prentice, G.D. Farquhar, E.-D. Schulze, and O. Sala. 1996. Terrestrial ecosystems: Biotic feedbacks to climate. In Climate Change 1995: The IPCC Assessment, ed. J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Hairns, A. Kattenberg, and K. Maskell, 444–481. Cambridge: Cambridge University Press.Google Scholar
  24. Melillo, J.M., J.M. Reilly, D.W. Kicklighter, A.C. Gurgel, T.W. Cronin, S. Paltsev, B.S. Felzer, X. Wang, et al. 2009. Indirect emissions from biofuels: How important? Science 326: 1397–1399. doi:10.1126/science.1180251.CrossRefGoogle Scholar
  25. Melillo, J.M., S. Butler, J. Johnson, J. Mohan, P. Steudler, H. Lux, E. Burrows, F. Bowles, et al. 2011. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proceedings of the National Academy of Sciences of the United States of America 108: 9508–9512. doi:10.1073/pnas.1018189108.CrossRefGoogle Scholar
  26. Mitchell, T., T.R. Carter, P. Jones, and M. Hulme. 2004. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Working Paper 55.Google Scholar
  27. Narayanan, B.G., and T.L. Walmsley. 2008. Global trade, assistance, and production: The GTAP 7 database. West Lafayette, IN: Center for Global Trade Analysis, Purdue University.Google Scholar
  28. Pan, Y., R.A. Birdsey, J. Fang, R. Houghton, P.E. Kauppi, W.A. Kurz, O.L. Phillips, A. Shvidenko, et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333: 988–993. doi:10.1126/science.1201609.CrossRefGoogle Scholar
  29. Pregitzer, K.S., and E.S. Euskirchen. 2004. Carbon cycling and storage in world forests: Biome patterns related to forest age. Global Change Biology 10: 2052–2077. doi:10.1111/j.1365-2486.2004.00866.x.CrossRefGoogle Scholar
  30. Prinn, R., H. Jacoby, A. Sokolov, C. Wang, X. Xiao, Z. Yang, R. Eckhaus, P. Stone, et al. 1999. Integrated global system model for climate policy assessment: Feedbacks and sensitivity studies. Climatic Change 41: 469–546.CrossRefGoogle Scholar
  31. Reilly, J.M., J.M. Melillo, Y. Cai, D.W. Kicklighter, A.C. Gurgel, S. Paltsev, T.W. Cronin, A. Sokolov, et al. 2012. Using land to mitigate climate change: Hitting the target, recognizing the tradeoffs. Environmental Science and Technology 46: 5672–5679.CrossRefGoogle Scholar
  32. Ricketts, T.H., B. Soares-Filho, G.A.B. da Fonseca, D. Nepstad, A. Pfaff, A. Petsonk, A. Anderson, D. Boucher, et al. 2010. Indigenous lands, protected areas, and slowing climate change. PLoS Biology 8: e1000331. doi:10.1371/journal.pbio.1000331.CrossRefGoogle Scholar
  33. Schimel, D., B.B. Stephens, and J.B. Fisher. 2015. Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America 112: 436–441. doi:10.1073/pnas.1407302112.CrossRefGoogle Scholar
  34. Schlosser, C.A., D. Kicklighter, and A. Sokolov. 2007. A global land system framework for integrated climate-change assessments. MIT Joint Program for the Science and Policy of Global Change. Report 147. Massachusetts Institute of Technology, Cambridge. http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt147.pdf.
  35. Soares-Filho, B.S., D.C. Nepstad, L.M. Curran, G.C. Cerqueira, R.A. Garcia, C.A. Ramos, E. Voll, A. McDonald, et al. 2006. Modelling conservation in the Amazon basin. Nature 440: 520–523. doi:10.1038/nature04389.CrossRefGoogle Scholar
  36. Soares-Filho, B., P. Moutinho, D. Nepstad, A. Anderson, H. Rodrigues, R. Garcia, L. Dietzsch, F. Merry, et al. 2010. Role of Brazilian Amazon protected areas in climate change mitigation. Proceedings of the National Academy of Sciences of the United States of America 107: 10821–10826. doi:10.1073/pnas.0913048107.CrossRefGoogle Scholar
  37. Sokolov, A., and P.H. Stone. 1998. A flexible climate model for use in integrated assessments. Climate Dynamics 14: 291–303. doi:10.1007/s003820050224.CrossRefGoogle Scholar
  38. Sokolov, A.P., C.A. Schlosser, S. Dutkiewicz, S. Paltsev, D.W. Kicklighter, H.D. Jacoby, R.G. Prinn, C.E. Forest, et al. 2005. The MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation. MIT Joint Program for the Science and Policy of Global Change Report 124. Massachusetts Institute of Technology, Cambridge. http://globalchange.mit.edu/files/document/MITJPSPGC_Rpt124.pdf.
  39. Sokolov, A.P., D.W. Kicklighter, J.M. Melillo, B.S. Felzer, C.A. Schlosser, and T.W. Cronin. 2008. Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. Journal of Climate 21: 3776–3796. doi:10.1175/2008JCLI2038.1.CrossRefGoogle Scholar
  40. Tian, H., J.M. Melillo, D.W. Kicklighter, S. Pan, J. Liu, A.D. McGuire, and B. Moore III. 2003. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle. Global and Planetary Change 37: 201–217. doi:10.1016/S0921-8181(02)00205-9.Google Scholar
  41. UN. 2015. World population prospects: The 2015 revision, key findings and advance tables. Working Paper No. ESA/P/WP.241. United Nations, Department of Economic and Social Affairs, Population Division, New York.Google Scholar
  42. Vistconte, P., M. Di Marco, J.G. Alvarez-Romero, S.R. Januchowski-Hartley, R.L. Pressey, R. Weeks, and C. Rondinini. 2013. Effects of errors and gaps in spatial data sets on assessment of conservation progress. Conservation Biology 27: 1000–1010. doi:10.1111/cobi.12095.CrossRefGoogle Scholar
  43. Wang, C., R.G. Prinn, and A. Sokolov. 1998. A global interactive chemistry and climate model: Formulation and testing. Journal of Geophysical Research 103: 3399–3418.CrossRefGoogle Scholar
  44. Wang, X. 2008. Impacts of greenhouse gas mitigation policies on agricultural land. PhD Thesis. Cambridge, Massachusetts Institute of Technology.Google Scholar
  45. Watson, J.E.M., N. Dudley, D.B. Segan, and M. Hockings. 2014. The performance and potential of protected areas. Nature 515: 67–73. doi:10.1038/nature13947.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2015

Authors and Affiliations

  • Jerry M. Melillo
    • 1
  • Xiaoliang Lu
    • 1
  • David W. Kicklighter
    • 1
  • John M. Reilly
    • 2
  • Yongxia Cai
    • 3
  • Andrei P. Sokolov
    • 2
  1. 1.The Ecosystems CenterMarine Biological LaboratoryWoods HoleUSA
  2. 2.Joint Program on the Science and Policy of Global ChangeMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Agricultural, Resource and Energy Economics and Policy Program, Social, Statistical, and Environmental SciencesRTI InternationalResearch Triangle ParkUSA

Personalised recommendations