Skip to main content

Maximizing Legacy and Impact of Primary Research: A Call for Better Reporting of Results

Abstract

Much of the scientific literature in existence today is based on model systems and case studies, which help to split research into manageable blocks. The impact of this research can be greatly increased in meta-analyses that combine individual studies published over time to identify patterns across studies; patterns that may go undetected by smaller studies and that may not be the main subject of investigation. However, many potentially useful studies fail to provide sufficient data (typically means, true sample sizes, and measures of variability) to permit meta-analysis. Authors of primary research studies should provide these summary statistics as a minimum, and editors should require them to do so. By putting policies in place that require these summary statistics to be included, or even those that require raw data, editors and authors can maximize the legacy and impact of the research they publish beyond that of their initial target audience.

This is a preview of subscription content, access via your institution.

References

  1. Bernes, C., K.A. Bråthen, B.C. Forbes, A. Hofgaard, J. Moen, and J.D. Speed. 2013. What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review protocol. Environmental Evidence 2: 6. doi:10.1186/2047-2382-2-6.

    Article  Google Scholar 

  2. BMJ. 2010a. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. BMJ 340: 332. doi:10.1136/bmj.c332.

    Article  Google Scholar 

  3. BMJ. 2010b. The new CONSORT statement. BMJ 340: c1432. doi:10.1136/bmj.c1432.

    Article  Google Scholar 

  4. Borenstein, M., L.V. Hedges, J.P. Higgins, and H.R. Rothstein. 2011. Introduction to meta-analysis. Chichester: Wiley. ISBN 978-0-470-05724-7.

    Google Scholar 

  5. Burgess, S., I.R. White, M. Resch-Rigon, and A.M. Wood. 2013. Combining multiple imputation and meta-analysis with individual participant data. Statistics in Medicine 32(26): 4499–4514. doi:10.1002/sim.5844.

    Article  Google Scholar 

  6. Fisher, R.A. 1932. Statistical methods for research workers. London: Oliver & Boyd. ISBN 0-05-002170-2.

    Google Scholar 

  7. Gibson, C.A., B.W. Bailey, M.J. Carper, J.D. LeCheminant, E.P. Kirk, G. Huang, K. Drowatzky DuBose, and J.E. Donnelly. 2006. Author contacts for retrieval of data for a meta-analysis on exercise and diet restriction. International Journal of Technology Assessment in Health Care 22(02): 267–270. doi:10.1017/S0266462306051105.

    Article  Google Scholar 

  8. Glass, G.V. 1976. Primary, secondary, and meta-analysis of research. Educational Researcher 5(10): 3–8.

    Article  Google Scholar 

  9. Gurevitch, J., L.L. Morrow, A. Wallace, and J.S. Walsh. 1992. A meta-analysis of competition in field experiments. The American Naturalist 140(4): 539–572.

    Article  Google Scholar 

  10. Haddaway, N.R., A. Burden, C.D. Evans, J.R. Healey, D.L. Jones, S.E. Dalrymple, and A.S. Pullin. 2014. Evaluating effects of land management on greenhouse gas fluxes and carbon balances in boreo-temperate lowland peatland systems. Environmental Evidence 3: 5. doi:10.1186/2047-2382-3-5.

    Article  Google Scholar 

  11. Harris, C., L.V. Hedges, and J.C. Valentine. 2009. Handbook of research synthesis and meta-analysis. New York: Russell Sage Foundation. ISBN 978-0-87154-163-5.

    Google Scholar 

  12. Higgins, J.P.T., and S. Green. 2011. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. Updated March 2011. Retrieved March 1, 2014, from www.cochrane-handbook.org.

  13. Jones, D. 1995. Meta-analysis: weighing the evidence. Statistics in Medicine 14: 137–149. doi:10.1002/sim.4780140206.

    CAS  Article  Google Scholar 

  14. Lau, J., E.M. Antman, J. Jimenez-Silva, B. Kupelnick, F. Mosteller, and T.C. Chalmers. 1992. Cumulative meta-analysis of therapeutic trials for myocardial infarction. New England Journal of Medicine 327(4): 248–254. doi:10.1056/NEJM199207233270406.

    CAS  Article  Google Scholar 

  15. O’Rourke, K. 2007. An historical perspective on meta-analysis: dealing quantitatively with varying study results. Journal of the Royal Society of Medicine 100(12): 579–582.

    Article  Google Scholar 

  16. Pullin, A.S., and T.M. Knight. 2001. Effectiveness in conservation practice: Pointers from medicine and public health. Conservation Biology 15(1): 50–54. doi:10.1111/j.1523-1739.2001.99499.x.

    Article  Google Scholar 

  17. Pullin, A.S., and G.B. Stewart. 2006. Guidelines for systematic review in conservation and environmental management. Conservation Biology 20(6): 1647–1656. doi:10.1111/j.1523-1739.2006.00485.x.

    Article  Google Scholar 

  18. Pullin, A.S., M. Bangpan, S. Dalrymple, K. Dickson, N.R. Haddaway, J.R. Healey, H. Hauari, N. Hockley, et al. 2013. Human well-being impacts of terrestrial protected areas. Environmental Evidence 2: 19. doi:10.1186/2047-2382-2-19.

    Article  Google Scholar 

  19. Rantalainen, M.L., J. Haimi, H. Fritze, T. Pennanen, and H. Setala. 2008. Soil decomposer community as a model system in studying the effects of habitat fragmentation and habitat corridors. Soil Biology & Biochemistry 40(4): 853–863. doi:10.1016/j.soilbio.2007.11.008.

    CAS  Article  Google Scholar 

  20. Thomson Reuters. 2013. 2012 Journal Citation Reports® Science Edition. Accessed October, 2013.

  21. Tummers, B. 2006. DataThief III. Retrieved March 1, 2014, from http://datathief.org.

  22. Vines, T.H., A.Y.K. Albert, R.L. Andrew, F. Débarre, D.G. Bock, M.T. Franklin, K.J. Gilbert, J.-S. Moore, et al. 2014. The availability of research data declines rapidly with article age. Current Biology 24: 94–97. doi:10.1016/j.cub.2013.11.014.

    CAS  Article  Google Scholar 

  23. Wiebe, N., B. Vandermeer, R.W. Platt, T.P. Klassen, D. Moher, and N.J. Barrowman. 2006. A systematic review identifies a lack of standardization in methods for handling missing variance data. Journal of Clinical Epidemiology 59: 342–353. doi:10.1016/j.jclinepi.2005.08.017.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Claes Bernes, Ruth Lewis, and two anonymous reviewers for their comments on a draft version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Neal R. Haddaway.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haddaway, N.R. Maximizing Legacy and Impact of Primary Research: A Call for Better Reporting of Results. AMBIO 43, 703–706 (2014). https://doi.org/10.1007/s13280-014-0535-6

Download citation

Keywords

  • Publishing
  • Meta-analysis
  • Systematic review
  • Data reporting
  • Quantitative synthesis
  • Missing data