, Volume 43, Issue 7, pp 878–890 | Cite as

Linking Cellulose Fiber Sediment Methyl Mercury Levels to Organic Matter Decay and Major Element Composition

  • Olof Regnell
  • Mark Elert
  • Lars Olof Höglund
  • Anna Helena Falk
  • Anders Svensson


Methylation of mercury (Hg) to highly toxic methyl Hg (MeHg), a process known to occur when organic matter (OM) decomposition leads to anoxia, is considered a worldwide threat to aquatic ecosystems and human health. We measured temporal and spatial variations in sediment MeHg, total Hg (THg), and major elements in a freshwater lagoon in Sweden polluted with Hg-laden cellulose fibers. Fiber decomposition, confined to a narrow surface layer, resulted in loss of carbon (C), uptake of nitrogen (N), phosphorus (P), and sulfur (S), and increased MeHg levels. Notably, fiber decomposition and subsequent erosion of fiber residues will cause buried contaminants to gradually come closer to the sediment–water interface. At an adjacent site where decomposed fiber accumulated, there was a gain in C and a loss of S when MeHg increased. As evidenced by correlation patterns and vertical chemical profiles, reduced S may have fueled C-fixation and Hg methylation at this site.


Mercury Methylation Cellulose fiber Decomposition Major element cycles 



This study was part of a project initiated and run by the Kalmar County Administration and financed by the Swedish EPA. We thank the project manager Anna Aleljung and also Tommy Hammar, Kalmar County Administration and Bo Troedsson, Eman Catchment Management Association for taking part in the planning of the project and for providing equipment for field measurement and field sampling. As always, the mercury laboratory at IVL, Gothenburg determined mercury and methyl mercury with high accuracy and precision.


  1. Benoit, J.M., C.C. Gilmour, R.P. Mason, G.S. Riedel, and G.F. Riedel. 1998. Behavior of mercury in the Patuxent River estuary. Biogeochemistry 40: 249–265. doi: 10.1023/A:1005905700864.CrossRefGoogle Scholar
  2. Berg, I.A., D. Kockelkorn, W.H. Ramos-Vera, R.F. Say, J. Zarzycki, M. Hügler, B.E. Alber, and G. Fuchs. 2010. Autotrophic carbon fixation in archaea. Nature Reviews/Microbiology 8: 447–460. doi: 10.1038/nrmicro2365.Google Scholar
  3. Bertics, V.J., J.A. Sohm, T. Treude, C.-E.T. Chow, D.G. Capone, J.A. Fuhrman, and W. Ziebis. 2010. Burrowing deeper into benthic nitrogen cycling: The impact of bioturbation on nitrogen fixation coupled to sulfate reduction. Marine Ecology Progress Series 409: 1–15. doi: 10.3354/meps08639.CrossRefGoogle Scholar
  4. Bloom, N.S. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences 49: 1010–1017. doi: 10.1139/f92-113.CrossRefGoogle Scholar
  5. Cleveland, C.C., and D. Liptzin. 2007. C:N: P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85: 235–252. doi: 10.1007/s10533-007-9132-0.CrossRefGoogle Scholar
  6. Compeau, G.C., and R. Bartha. 1985. Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology 50: 498–502.Google Scholar
  7. Elser, J.J., W.F. Fagan, R.F. Denno, D.R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandl, S.S. Kilham, et al. 2000. Nutritional constraints in terrestrial and freshwater food webs. Nature 408: 578–580. doi: 10.1038/35046058.CrossRefGoogle Scholar
  8. Fathi, M., J.J. Ridal, D.R.S. Lean, and J.M. Blais. 2013. Do wood fibers from pulp mill affect the distribution of total and methyl mercury in river sediments? Journal of Great Lakes Research 39: 66–73. doi: 10.1016/j.jglr.2012.12.018.CrossRefGoogle Scholar
  9. Fenchel, T., and B.J. Finlay. 1995. Ecology and evolution in anoxic worlds. New York: Oxford University Press.Google Scholar
  10. Fleming, E.J., E.E. Mack, P.G. Green, and D.C. Nelson. 2006. Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology 72: 457–464. doi: 10.1128/AEM.72.1.457-464.2006.CrossRefGoogle Scholar
  11. Fontaine, S., S. Barot, P. Barré, N. Bdioui, B. Mary, and C. Rumpel. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450: 277–280. doi: 10.1038/nature06275.CrossRefGoogle Scholar
  12. Gavis, J., and J.F. Ferguson. 1972. The cycling of mercury through the environment. Water Research 6: 989–1008.CrossRefGoogle Scholar
  13. Handley, K.M., N.C. VerBerkmoes, C.I. Steefel, K.H. Williams, I. Sharon, C.S. Miller, K.R. Frischkorn, K. Chourey, et al. 2013. Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. The ISME Journal 7: 800–816. doi: 10.1038/ismej.2012.148.CrossRefGoogle Scholar
  14. Hofsten, B.v., and N. Edberg. 1972. Estimating the rate of degradation of cellulose fibers in water. Oikos 23: 29–34.CrossRefGoogle Scholar
  15. Hultgren, P. 2000. Maringeologisk undersökning av Nötöfjärden, Oskarshamns kommun. Department of Marine Geology. Göteborg University (in Swedish).Google Scholar
  16. Jonsson, P., J. Eckhéll, and P. Larsson. 2000. PCB and DDT in laminated sediments from offshore and archipelago areas of the NW Baltic Sea. AMBIO 29: 268–276. doi: 10.1579/044-7447-29.4.268.Google Scholar
  17. Naturvårdsverket. 1995. Branschkartläggningen: en översiktlig kartläggning av efterbehandlingsbehovet i Sverige. Rapport 4393. Naturvårdsverkets förlag. ISBN 91-620-4393-5 (in Swedish).Google Scholar
  18. Olsson, S., J. Regnéll, A. Persson, and P. Sandgren. 1997. Sediment-chemistry response to land-use change and pollutant loading in a hypertrophic lake, southern Sweden. Journal of Paleolimnology 17: 275–294. doi: 10.1023/A:1007967832177.CrossRefGoogle Scholar
  19. Pan-Hou, H.S., and N. Imura. 1982. Involvement of mercury methylation in microbial mercury detoxification. Archives of Microbiology 131: 176–177.CrossRefGoogle Scholar
  20. Pak, K.-R., and R. Bartha. 1998. Mercury methylation by interspecies hydrogen and acetate transfer between sulfidogens and methanogens. Applied and Environmental Microbiology 64: 1987–1990.Google Scholar
  21. Parks, J.M., A. Johs, M. Podar, R. Bridou, R.A. Hurt, S.D. Smith, S.J. Tomanicek, Y. Qian, et al. 2013. The genetic basis for bacterial mercury methylation. Science 339: 1332–1335. doi: 10.1126/science.1230667.CrossRefGoogle Scholar
  22. Ramlal, P.S., C.A. Kelly, J.W.M. Rudd, and A. Furutani. 1993. Sites of methyl mercury production in remote Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 50: 972–979. doi: 10.1139/f93-112.CrossRefGoogle Scholar
  23. Regnell, O., and T. Hammar. 2004. Coupling of methyl and total mercury in a minerotrophic peat bog in southeastern Sweden. Canadian Journal of Fisheries and Aquatic Sciences 61: 2014–2023. doi: 10.1139/F04-143.CrossRefGoogle Scholar
  24. Rozan, T.F., M. Taillefert, R.E. Trouwborst, B.T. Glazer, S. Ma, J. Herszage, L.M. Valdes, K.S. Price, et al. 2002. Iron–sulfur–phosphorus cycling in the sediment of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms. Limnology and Oceanography 47: 1346–1354. doi: 10.4319/lo.2002.47.5.1346.CrossRefGoogle Scholar
  25. Skyllberg, U. 2008. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetlands soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production. Journal of Geophysical Research 113: G00C03. doi: 10.1029/2008JG000745.CrossRefGoogle Scholar
  26. Sunderland, E.M., and G.L. Chmura. 2000. An inventory of historical mercury emissions in Maritime Canada: Implications for present and future contamination. The Science of the Total Environment 256: 39–57. doi: Scholar
  27. Travnikov, O., I. Ilyin, O. Rozovskaya, M. Varygina, W. Aas, H.T. Uggerud, K. Mareckova, and R. Wankmueller. 2012. Long-term changes of heavy metal transboundary pollution of the environment (1990–2010). EMEP contribution to the revision of the heavy metal protocol. EMEP Status Report 2/2012.Google Scholar
  28. Ullrich, S.M., T.W. Tanton, and S.A. Abdrashitova. 2001. Mercury in the environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology 31: 241–293. doi: 10.1080/20016491089226.CrossRefGoogle Scholar
  29. Watras, C.J., and N.S. Bloom. 1992. Mercury and methylmercury in individual zooplankton: Implications for bioaccumulation. Limnology and Oceanography 37: 1313–1318. doi: 10.4319/lo.1992.37.6.1313.CrossRefGoogle Scholar
  30. Woyke, T., H. Teeling, N.N. Ivanova, M. Huntemann, M. Richter, F.O. Gloeckner, D. Boffelli, I.J. Anderson, et al. 2006. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443: 950–955. doi: 10.1038/nature05192.CrossRefGoogle Scholar
  31. Yu, R.-Q., J.R. Reinfelder, M.E. Hines, and T. Barkay. 2013. Mercury methylation by the methanogen Methanospirillum hungatei. Applied and Environmental Microbiology 79: 6325–6330. doi: 10.1128/AEM.01556-13.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2014

Authors and Affiliations

  • Olof Regnell
    • 1
  • Mark Elert
    • 2
  • Lars Olof Höglund
    • 2
  • Anna Helena Falk
    • 3
  • Anders Svensson
    • 4
  1. 1.Department of Biology, Aquatic EcologyUniversity of LundLundSweden
  2. 2.Kemakta Konsult ABStockholmSweden
  3. 3.Akvaplan-niva ASFRAM - High North Research Centre for Climate and the EnvironmentTromsöNorway
  4. 4.Environmental UnitKalmar County AdministrationKalmarSweden

Personalised recommendations