A Thermodynamic Geography: Night-Time Satellite Imagery as a Proxy Measure of Emergy

Abstract

Night-time satellite imagery enables the measurement, visualization, and mapping of energy consumption in an area. In this paper, an index of the “sum of lights” as observed by night-time satellite imagery within national boundaries is compared with the emergy of the nations. Emergy is a measure of the solar energy equivalent used, directly or indirectly, to support the processes that characterize the economic activity in a country. Emergy has renewable and non-renewable components. Our results show that the non-renewable component of national emergy use is positively correlated with night-time satellite imagery. This relationship can be used to produce emergy density maps which enable the incorporation of spatially explicit representations of emergy in geographic information systems. The region of Abruzzo (Italy) is used to demonstrate this relationship as a spatially disaggregate case.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    The National Environmental Accounting Database, Center for Environmental Policy, University of Florida (http://www.cep.ees.ufl.edu/nead/).

References

  1. Bastianoni, S., S.N. Nielsen, N. Marchettini, and S.E. Jørgensen. 2005. Use of thermodynamic functions for expressing some relevant aspects of sustainability. International Journal of Energy Research 29: 53–64.

    Article  Google Scholar 

  2. Bastianoni, S., F.M. Pulselli, S. Focardi, E.B.P. Tiezzi, and P. Gramatica. 2008. Correlations and complementarities in data and methods through principal components analysis (PCA) applied to the results of the SPIn-Eco project. Journal of Environmental Management 86: 419–426.

    Article  Google Scholar 

  3. Bastianoni, S., F. Morandi, T. Flaminio, R.M. Pulselli, and E.B.P. Tiezzi. 2011. Emergy and emergy algebra explained by means of ingenuous set theory. Ecological Modelling 222: 2903–2907.

    Article  Google Scholar 

  4. Brandt-Williams, S., and M. Brown. 2010. Renewable emergy in earth’s biomes. In Emergy synthesis 6: Theory and applications of the emergy methodology, ed. M. Brown, 93–104. Gainesville, FL: University of Florida.

    Google Scholar 

  5. Brown, M.T., and S. Ulgiati. 1997. Emergy-based indices and ratios to evaluate sustainability: Monitoring economies and technology toward environmentally sound innovation. Ecological Engineering 9: 51–69.

    Article  Google Scholar 

  6. Brown, M.T., M.J. Cohen, and S. Sweeney. 2009. Predicting national sustainability: The convergence of energetic, economic and environmental realities. Ecological Modelling 220: 3424–3438.

    Article  Google Scholar 

  7. Burkhard, B., F. Kroll, S. Nedkov, and F. Müller. 2012. Mapping ecosystem service supply, demand and budgets. Ecological Indicators 21: 17–29.

    Article  Google Scholar 

  8. Campbell, D.E., and A.S. Garmestani. 2012. An energy systems view of sustainability: Emergy evaluation of the San Luis Basin, Colorado. Journal of Environmental Management 95: 72–97.

    Article  Google Scholar 

  9. Campbell, D.E., and A. Ohrt. 2009. Environmental accounting using emergy: Evaluation of Minnesota. USEPA Project Report, EPA/600/R-09/002.

  10. Coscieme, L., F.M. Pulselli, S.E. Jørgensen, S. Bastianoni, and N. Marchettini. 2013. Thermodynamics-based categorization of ecosystems in a socio-ecological context. Ecological Modelling 258: 1–8.

    Article  Google Scholar 

  11. Costanza, R., R. d’Arge, R. de Groot, S. Farber, M. Grasso, K. Limburg, S. Naeem, R.V. O’Neill, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  CAS  Google Scholar 

  12. Dobson, J.E., E.A. Bright, P.R. Coleman, R.C. Durfee, and B.A. Worley. 2000. LandScan: A global population database for estimating populations at risk. Photogrammetric Engineering & Remote Sensing 66: 849–857.

    Google Scholar 

  13. Doll, C.N.H. 2008. CIESIN thematic guide to night-time light remote sensing and its applications. Palisades, NY: Center for International Earth Science Information Network of Columbia University.

    Google Scholar 

  14. Elvidge, C.D., M.L. Imhoff, K.E. Baugh, V.R. Hobson, I. Nelson, J. Safran, J.B. Dietz, and B.T. Tuttle. 2001. Night-time lights of the world: 1994–1995. Photogrammetry & Remote Sensing 56: 81–99.

    Article  Google Scholar 

  15. Elvidge, C.D., P. Cinzano, D.R. Pettit, J. Arvesen, P.C. Sutton, C. Small, R. Nemani, T. Longcore, et al. 2007. The Nightsat mission concept. International Journal of Remote Sensing 28: 2645–2670.

    Article  Google Scholar 

  16. Elvidge, C.D., P.C. Sutton, B.T. Tuttle, T. Ghosh, and K.E. Baugh. 2009a. Global urban mapping based on night-time lights. In Global mapping of human settlement, ed. P. Gamba, and M. Herold, 129–144. Boca Raton, FL: CRC Press.

    Google Scholar 

  17. Elvidge, C.D., E.H. Erwin, K.E. Baugh, D. Ziskin, B.T. Tuttle, T. Ghosh, and P.C. Sutton. 2009b. Overview of DMSP nightime lights and future possibilities. In 2009 Joint urban remote sensing event 1–3, 1665–1669.

  18. Frolking, S., T. Milliman, K.C. Seto, and M.A. Friedl. 2013. A global fingerprint of macro-scale changes in urban structure from 1999 to 2009. Environmental Research Letters 8: 1–10.

    Article  Google Scholar 

  19. Ghosh, T., C.D. Elvidge, P.C. Sutton, K.E. Baugh, D. Ziskin, and B.T. Tuttle. 2010a. Creating a global grid of distributed fossil fuel CO2 emissions from nighttime satellite imagery. Energies 3: 1895–1913.

    Article  CAS  Google Scholar 

  20. Ghosh, T., R.L. Powell, C.D. Elvidge, K.E. Baugh, P.C. Sutton, and S. Anderson. 2010b. Shedding light on the global distribution of economic activity. The Open Geography Journal 3: 147–160.

    Article  Google Scholar 

  21. Henderson, V., A. Storeygard, and D.N. Weil. 2009. Measuring economic growth from outer space. Working Paper, Department of Economics, Brown University, 2009(8), 1–36.

  22. Hubbert, M.K. 1956. Nuclear energy and the fossil fuels. Presentation to the spring meeting of the Southern District Division of Production. American Petroleum Institute, Texas, March 7–9.

  23. Imhoff, M.L., W.T. Lawrence, C.D. Elvidge, T. Paul, E. Levine, M.V. Privalsky, and V. Brown. 1997. Using nighttime DMSP/OLS image of city lights to estimate the impact of urban land use on soil resources in the United States. Remote Sensing of Environment 59: 105–117.

    Article  Google Scholar 

  24. Montanarella, L., and R. Vargas. 2012. Global governance of soil resources as a necessary condition for sustainable development. Current Opinion in Environmental Sustainability 4: 559–564.

    Article  Google Scholar 

  25. Morandi, F., D.E. Campbell, and S. Bastianoni. 2014. Set theory applied to uniquely define the inputs to territorial systems in emergy analysis. Ecological Modelling 271: 149–157.

    Google Scholar 

  26. Oda, T., and S. Maksyutov. 2011. A very high-resolution (1 km × 1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights. Atmospheric Chemistry and Physics 11: 543–556.

    Article  CAS  Google Scholar 

  27. Odum, H.T. 1971. Environment, power and society. New York: Wiley.

    Google Scholar 

  28. Odum, H.T. 1988. Self organization, transformity and information. Science 242: 1132–1139.

    Article  CAS  Google Scholar 

  29. Odum, H.T. 1991. Emergy and biogeochemical cycles. In Ecological physical chemistry, proceedings of an international workshop, 8–12 November 1990, eds. C. Rossi and E. Tiezzi. Amsterdam: Elsevier.

  30. Odum, H.T. 1996. Environmental accounting. Emergy and environmental decision making. New York: Wiley.

    Google Scholar 

  31. Odum, H.T., and E.P. Odum. 2000. The energetic basis for valuation of ecosystem services. Ecosystems 3: 21–25.

    Article  Google Scholar 

  32. Odum, H.T., E.C. Odum, and M. Blissett. 1987. Ecology and economy: Emergy analysis and public policy in Texas. L.B.J. School of Public Affairs and Texas Department of Agriculture, Policy Research Publication 78, University of Texas, Austin.

  33. Oki, T., and S. Kanae. 2006. Global hydrological cycles and world water resources. Science 313: 1068–1072.

    Article  CAS  Google Scholar 

  34. Pulselli, R.M. 2010. Integrating emergy evaluation and geographic information systems for monitoring resource use in the Abruzzo region (Italy). Journal of Environmental Management 91: 2349–2357.

    Article  Google Scholar 

  35. Pulselli, R.M., G.C. Magnoli, and E.B.P. Tiezzi. 2004. Emergy flows and sustainable indicators: The strategic environmental assessment for a master plan. In The sustainable city III, urban regeneration and sustainability, ed. N. Marchettini, C.A. Brebbia, E. Tiezzi, and L.C. Wadhwa, 3–10. Southampton: WIT Press.

    Google Scholar 

  36. Pulselli, F.M., F. Ciampalini, C. Leipert, and E. Tiezzi. 2008a. Integrating methods for the environmental sustainability: The SPIn-Eco Project in the Province of Siena (Italy). Journal of Environmental Management 86: 332–341.

    Article  Google Scholar 

  37. Pulselli, R.M., F.M. Pulselli, and M. Rustici. 2008b. Emergy accounting of the Province of Siena: Towards a thermodynamic geography for regional studies. Journal of Environmental Management 86: 342–353.

    Article  CAS  Google Scholar 

  38. Pulselli, F.M., L. Coscieme, and S. Bastianoni. 2011. Ecosystem services as a counterpart of emergy flows to ecosystems. Ecological Modelling 222: 2924–2928.

    Article  Google Scholar 

  39. Pulselli, R.M., P. Romano, M. Marchi, and S. Bastianoni. 2012. Carbon emission intensity and areal empower density: Combining two systemic indicators to inform the design and planning of sustainable energy landscapes. In Sustainable energy landscapes, ed. S. Stremke, and A. van den Dobbelsteen, 385–406. Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  40. Steele, J.H., J.J. Puschell, C.F. Schueler, S.W. Miller, K. Grant, and T.F. Lee. 2012. Expected performance of the Visible Infrared Imager Radiometer Suite (VIIRS) without detector sample aggregation. In Remote sensing system engineering IV, eds. P.E. Ardanuy, J.J. Puschell, and H.J. Bloom, 1–8. Proceedings of SPIE 8516.

  41. Sutton, P.C., and R. Costanza. 2002. Global estimates of market and non-market values derived from night-time satellite imagery, land cover, and ecosystem service valuation. Ecological Economics 41: 509–527.

    Article  Google Scholar 

  42. Sutton, P.C., S.J. Anderson, B.T. Tuttle, and L. Morse. 2012. The real wealth of nations: Mapping and monetizing the human ecological footprint. Ecological Indicators 16: 11–22.

    Article  Google Scholar 

  43. Sweeney, S., M.J. Cohen, D. King, and M.T. Brown. 2007. Creation of a global emergy database for standardized national emergy synthesis. In Emergy synthesis 4: Theory and application of emergy methodology, ed. M. Brown, 23.1–23.15. Gainesville, FL: University of Florida.

    Google Scholar 

  44. Syrbe, R.-U., and U. Walz. 2012. Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecological Indicators 21: 80–88.

    Article  Google Scholar 

  45. Tiezzi, E. 2003. The end of time. Southampton: Wit Press.

    Google Scholar 

  46. Tuttle, B.T., S.J. Anderson, P.C. Sutton, C.D. Elvidge, and K. Baugh. 2013. It used to be dark here: Geolocation calibration of the Defense Meteorological Satellite Program Operational Linescan System. Photogrammetric Engineering and Remote Sensing 79: 287–297.

    Article  Google Scholar 

  47. Vorosmarty, C.J., P. Green, J. Salisbury, and R.B. Lammers. 2000. Global water resources: Vulnerability for climate and population growth. Science 289: 284–288.

    Article  CAS  Google Scholar 

  48. Ward, J.D., S.H. Mohr, B.R. Myers, and W.P. Nel. 2012. High estimates of supply constrained emissions scenarios for long-term climate risk assessment. Energy Policy 51: 598–604.

    Article  Google Scholar 

Download references

Acknowledgments

We deeply thank two anonymous reviewers for their suggestions which contributed to improve the quality of the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Federico M. Pulselli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coscieme, L., Pulselli, F.M., Bastianoni, S. et al. A Thermodynamic Geography: Night-Time Satellite Imagery as a Proxy Measure of Emergy. AMBIO 43, 969–979 (2014). https://doi.org/10.1007/s13280-013-0468-5

Download citation

Keywords

  • Emergy
  • Night-time lights
  • Geographic information systems
  • Territorial systems
  • Thermodynamic geography