AMBIO

, Volume 42, Issue 8, pp 1022–1036 | Cite as

Linking Salmon Aquaculture Synergies and Trade-Offs on Ecosystem Services to Human Wellbeing Constituents

Article

Abstract

Salmon aquaculture has emerged as a successful economic industry generating high economic revenues to invest in the development of Chiloe region, Southern Chile. However, salmon aquaculture also consumes a substantial amount of ecosystem services, and the direct and indirect impacts on human wellbeing are still unknown and unexplored. This paper identifies the synergies and trade-offs caused by the salmon industry on a range of ecosystem services. The results show that large economic benefits due to the increase of provisioning ecosystem services are also causing a reduction on regulating and cultural services. Despite the improvement on average income and poverty levels experienced in communities closely associated with the sector, this progress is not large enough and social welfare did not improve substantially over the last decade. The rest of human wellbeing constituents in Chiloe region have not changed significantly compared to the development in the rest of the country.

Keywords

Salmon aquaculture Ecosystem services Synergies and trade-offs Chile 

Supplementary material

13280_2013_457_MOESM1_ESM.pdf (758 kb)
Supplementary material 1 (PDF 759 kb)

References

  1. Asencio, G., J. Carvajal, and M.T. González. 2008. Fallowing in Colaco Bay: Searching for environmental indicators. In 7th International Sea Lice Conference, Puerto Varas, Chile, 7 pp.Google Scholar
  2. Baneerjee, A., and E. Duflo, E. 2011. Poorer economics: A radical rethinking of the way to fight global poverty, 303 pp. New York: Public Affairs.Google Scholar
  3. Barton, J., and A. Floysand. 2010. The political ecology of Chilean salmon aquaculture, 1982–2010: A trajectory from economic development to global sustainability. Global Environmental Change 20: 739–752.CrossRefGoogle Scholar
  4. Bennett, E.M., G.D. Petterson, and L.J. Gordon. 2009. Understanding relationships among multiple ecosystem services. Ecology Letters 12: 1394–1404.CrossRefGoogle Scholar
  5. Bravo, S., M. Nuñez, and M.T. Silva. 2013. Efficacy of the treatments used for the control of Caligus rogercresseyi infecting Atlantic salmon, Salmo salar L., in a new fish-farming location in Region XI Chile. Journal of Fish Diseases 36: 221–228.CrossRefGoogle Scholar
  6. Buschmann, A., and A. Fortt. 2005. Efectos ambientales de la acuicultura intensiva y alternativas para un desarrollo sustentable. Revista Ambiente y Desarrollo 21(3): 58–64.Google Scholar
  7. Buschmann, A.H., V.A. Riquelme, M.C. Hernández-González, D. Varela, J.E. Jiménez, J.A. Henríquez, P.A. Vergara, R. Guíñez, et al. 2006. A review of the impacts of salmonid farming on marine coastal ecosystems in the southeast Pacific. ICES Journal of Marine Science 63: 1338–1345.CrossRefGoogle Scholar
  8. Buschmann, A., F. Cabello, K. Young, J. Carvajal, D.A. Varela, and L. Henríquez. 2009. Salmon aquaculture and coastal ecosystem health in Chile: Analysis of regulations, environmental impacts and bioremediation systems. Ocean Coastal Management 52: 243–249.CrossRefGoogle Scholar
  9. Cardinale, B.J., J.E. Duffy, A. González, D.U. Hooper, C. Perrings, P. Venail, A. Narwani, G.M. Mace, et al. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.CrossRefGoogle Scholar
  10. Carpenter, S.R., H.A. Mooney, K. Agard, D. Capistrano, R.S. De Fries, S. Díaz, T. Dietz, A.K. Duraiappah, et al. 2009. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proceedings of the National Academy of Sciences of the United States of America 106(5): 1305–1312.CrossRefGoogle Scholar
  11. CASEN. 2011. Ministerio de Desarrollo Social, División Social, Encuesta CASEN. Retrieved March 11, 2013, from http://www.ministeriodesarrollosocial.gob.cl/observatorio/casen/.
  12. Chopin, T., S.M.C. Robinson, M. Troell, A. Neori, and A.H.J. Fang. 2008. Mariculture waste management. In Ecological engineering. Encyclopedia of ecology, vol. 3, ed. S.E. Jørgensen, and F.B. Fath, 2211–2217. Oxford: Elsevier.Google Scholar
  13. Daw, T.K., S. Rosendo Brown, and R. Pomeroy. 2011. Applying the ecosystem services concept to poverty alleviation: The need to disaggregate human well-being. Environmental Conservation 38(4): 370–379.CrossRefGoogle Scholar
  14. Deutsch, L., S. Graslunda, C. Folke, M. Troell, M. Huitric, N. Kautskya, and L. Lebeld. 2007. Feeding aquaculture growth through globalization: Exploitation of marine ecosystems for fishmeal. Global Environmental Change 17: 238–244.CrossRefGoogle Scholar
  15. Diaz, E. 2009. Operarios y operarias de las plantas de proceso de la industria del salmón: Estudio de remuneraciones. Dirección del Trabajo. Gobierno de Chile. Santiago de Chile, Chile, 73 pp.Google Scholar
  16. Duraiappah, A.K. 2004. Exploring the Links: Human well-being, poverty and ecosystems, 44 pp. Nairobi, Kenya: United Nations Environment Programme.Google Scholar
  17. Duraiappah, A.K. 2011. Ecosystem services and human well-being: Do global findings make any sense? BioScience 61(1): 7–8.CrossRefGoogle Scholar
  18. FAO (The Food and Agriculture Organization of the United Nations). 2012. State of the World’s Fisheries and Aquaculture 2012, 209 pp. Rome, Italy: FAO.Google Scholar
  19. FIP (Fondo de Investigación Pesquera). 2005. Diagnóstico económico y social de la acuicultura en Chile Nº2002-24. Final report 1 Coquimbo, Chile, 783 pp.Google Scholar
  20. Gillet, J., and C. Olate. 2010. La crisis del salmón y el desempleo en la decima región. Seminario de título Ingeniero comercial. Mención economía Facultad de Economía y negocios. Santiago de Chile, Chile: Universidad de Chile, 121 pp.Google Scholar
  21. Haggett, C. 2011. Understanding public responses to offshore wind power. Energy Policy 39: 503–510.CrossRefGoogle Scholar
  22. INE (Instituto Nacional de Estadística). 2008. Estudio de mercado acuícola. Región de Los Lagos. Dirección Regional INE, Unidad Técnica. Puerto Montt, Chile, 95 pp.Google Scholar
  23. Jordan, S.J., T. O’Higgins, and J.A. Dittmar. 2012. Ecosystem services of coastal habitats and fisheries: Multiscale ecological and economic models in support of ecosystem-based management. Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 4: 573–586.CrossRefGoogle Scholar
  24. Krkoscek, M., J.S. Ford, A. Morton, S. Lele, R.A. Myers, and M.A. Lewis. 2007. Declining wild salmon populations in relation to parasites from farm salmon. Science 318: 1772–1775.CrossRefGoogle Scholar
  25. Melillanca I., and I. Díaz. 2007. Radiografía a la industria del salmón: bajo la mirada de estándares de RSC. Documentos Red Puentes Chile, Puerto Montt, Chile, 38 pp.Google Scholar
  26. Millanao, A., M. Barrientos, C. Gómez, A. Tomova, A. Buschmann, H. Dölz, and F. Cabello. 2011. Uso inadecuado y excesivo de antibióticos: Salud pública y salmonicultura en Chile. Revista Médica de Chile 139: 107–118.CrossRefGoogle Scholar
  27. Millennium Ecosystem Assessment (MEA). 2005. Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.Google Scholar
  28. Montero, C. 2004. Formación y desarrollo de un clúster organizado. El caso de la industria del salmón en Chile. Comisión Económica para América Latina y Caribe. Red de reestructuración y productividad. Naciones Unidas, Santiago de Chile, 75 pp.Google Scholar
  29. Mordue-Luntz, A.J., and A.W. Pike. 2002. Salmon farming: Towards an integrated pest management strategy for sea lice. Pest Management Science 58: 513–514.CrossRefGoogle Scholar
  30. Raudsepp-Hearne, C., G.D. Peterson, M. Tengö, E.M. Bennett, T. Holland, K. Benessaiah, G.K. MacDonald, and L. Pfeifer. 2010. Untangling the environmentalist’s paradox: Why is human well-being increasing as ecosystem services degrade? BioScience 60: 576–589.CrossRefGoogle Scholar
  31. Rozas, M., and G. Asencio. 2007. Evaluación de la situación epidemiológica de la caligiasis en Chile; hacia una estrategia de control efectiva. SalmoCiencia 2: 43–59.Google Scholar
  32. Rupasingha, A., S.J. Goetz, and D. Freshwater. 2006. The production of social capital in US counties. Journal of Socio-Economics 35(1): 83–101.CrossRefGoogle Scholar
  33. Salomon, A.S., S. Gaichas, O. Jensen, V. Agostini, N. Sloan, J. Rice, T.R. McClanahan, M.H. Ruckelshaus, et al. 2011. Bridging the divide between fisheries and marine conservation science. Bulletin of Marine Science 87: 251–274.CrossRefGoogle Scholar
  34. Sander, H.A., and S. Polasky. 2009. The value of views and open space: Estimates from a hedonic pricing model for Ramsey County, Minnesota, USA. Land Use Policy 26(3): 837–845.CrossRefGoogle Scholar
  35. Sapkota, A., A.R. Sapkota, M. Kucharski, J. Burke, S. McKenzie, P. Walker, R. Lawrence, et al. 2008. Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environment International 34: 1215–1226.CrossRefGoogle Scholar
  36. Smith, L., J.L. Case, H.M. Smith, L.C. Harwell, and J.K. Summers. 2013. Relating ecosystem services to domains of human well-being: Foundation for a US index. Ecological Indicators 28: 79–90.CrossRefGoogle Scholar
  37. Soto, D., and F. Norambuena. 2004. Evaluation of salmon farming effects on marine systems in the inner seas of southern Chile: A large-scale mensurative experiment. Journal of Applied Ichthyology 20: 493–501.CrossRefGoogle Scholar
  38. Soto, D., F. Jara, and C.A. Moreno. 2001. Escaped salmon in the inner seas, southern Chile: Facing ecological and social conflicts. Ecological Applications 11: 1750–1762.CrossRefGoogle Scholar
  39. Tacon, A., M. Metian, and M.R. Hasan. 2009. Feed ingredients and fertilizers for farmed aquatic animals. Sources and composition. FAO Fisheries and Aquaculture technical paper No. 540. FAO, Rome, Italy, 210 pp.Google Scholar
  40. Tacon, A., M. Metian, G.M. Turchini, and S.S. De Silva. 2010. Responsible aquaculture and trophic level implications to global fish supply. Reviews in Fisheries Science 18: 94–105.CrossRefGoogle Scholar
  41. Tallis, H., and S. Polasky. 2009. Mapping and valuing ecosystem services as an approach for conservation and natural-resource management. Annals of the New York Academy of Sciences 1162: 265–283.CrossRefGoogle Scholar
  42. Tallis, H.T., T. Ricketts, A.D. Guerry, S.A. Wood, R. Sharp, E. Nelson, D. Ennaanay, S. Wolny, et al. 2013. InVEST 2.5.5 User’s Guide. The Natural Capital Project, Stanford, California, 352 pp.Google Scholar
  43. Tett, P. 2008. Fish farm wastes in the ecosystem. In Aquaculture in the ecosystem, ed. M. Holmer, K. Black, C.M. Duarte, N. Marbán, and I. Karakassis, 46 pp. The Netherlands: Springer.Google Scholar
  44. Thorstad, E.B., I.A. Fleming, P. McGinnity, D. Soto, V. Wennevik, and F. Whoriskey. 2008. Incidence and impacts of escaped farmed Atlantic salmon (Salmo salar) in nature. NINA Special Report 36, 110 pp.Google Scholar
  45. Valdés-Donoso, P., F.O. Mardones, M. Jarpa, M. Ulloa, T.E. Carpenter, and A.M. Perez. 2013. Co-infection patterns of infectious salmon anaemia and sea lice in farmed Atlantic salmon, Salmo salar L., in southern Chile (2007–2009). Journal of Fish Diseases 36: 353–360.CrossRefGoogle Scholar
  46. Villasante, S., F. González-Laxe, M.C. García-Negro, and G. Rodríguez-Rodríguez. 2011. Overfishing and the Common Fisheries Policy: (un)Successful results from TAC regulation? Fish and Fisheries 12(1): 34–50.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2013

Authors and Affiliations

  1. 1.Universidad de Los LagosCampus de OsornoOsornoChile
  2. 2.Faculty of Economics and Business AdministrationUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Campus do Mar, International Campus of ExcellenceVigoSpain
  4. 4.Centro Nacional Patagónico (CENPAT), CONICETPuerto MadrynArgentina

Personalised recommendations