, Volume 43, Issue 2, pp 191–195 | Cite as

Fire as a Soil-Forming Factor

  • Giacomo Certini


In the span of a human generation, fire can, in theory, impact all the land covered by vegetation. Its occurrence has many important direct and indirect effects on soil, some of which are long-lasting or even permanent. As a consequence, fire must be considered a soil-forming factor, on par with the others traditionally recognized, namely: parent material, topography, time, climate, living beings not endowed with the power of reason, and humans.


Fire Soil Pedogenesis Soil-forming factors Charcoal Soil organic matter 



I thank Professor Fiorenzo C. Ugolini and two anonymous reviewers for their constructive comments on the manuscript.


  1. Amundson, R. 2006. The state factor theory of soil formation. In Soils: Basic concepts and future challenges, ed. G. Certini, and R. Scalenghe, 310 pp. Cambridge: Cambridge University Press.Google Scholar
  2. Amundson, R., and H. Jenny. 1991. The place of humans in the state factor theory of ecosystems and their soils. Soil Science 151: 99–109.CrossRefGoogle Scholar
  3. Bond, W.J., F.I. Woodward, and G.F. Midgley. 2005. The global distribution of ecosystems in a world without fire. New Phytologist 165: 525–538.CrossRefGoogle Scholar
  4. Bowman, D.M.J.S., J.K. Balch, P. Artaxo, W.J. Bond, J.M. Carlson, M.A. Cochrane, C.M. D’Antonio, R.S. DeFries, et al. 2009. Fire in the Earth system. Science 324: 481–484.CrossRefGoogle Scholar
  5. Campbell, A.S., U. Schwertmann, and P.A. Campbell. 1997. Formation of cubic phases on heating ferrihydrite. Clay Minerals 32: 615–622.CrossRefGoogle Scholar
  6. Certini, G. 2005. Effects of fire on properties of forest soils: A review. Oecologia 143: 1–10.CrossRefGoogle Scholar
  7. Certini, G., and F.C. Ugolini. 2013. An updated, expanded, universal definition of soil. Geoderma 192: 378–379.CrossRefGoogle Scholar
  8. Certini, G., R. Scalenghe, and R. Amundson. 2009. A view of extraterrestrial soils. European Journal of Soil Science 60: 1078–1092.CrossRefGoogle Scholar
  9. Certini, G., C. Nocentini, H. Knicker, P. Arfaioli, and C. Rumpel. 2011. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 167–168: 148–155.CrossRefGoogle Scholar
  10. Clement, B.M., J. Javier, J.P. Sah, and M.S. Ross. 2011. The effects of wildfires on the magnetic properties of soils in the Everglades. Earth Surface Processes and Landforms 36: 460–466.CrossRefGoogle Scholar
  11. Giglio, L., J.T. Randerson, G.R. van der Werf, P.S. Kasibhatla, G.J. Collatz, D.C. Morton, and R.S. DeFries. 2010. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7: 1171–1186.CrossRefGoogle Scholar
  12. González-Pérez, J.A., F.J. González-Vila, G. Almendros, and H. Knicker. 2004. The effect of fire on soil organic matter—A review. Environment International 30: 855–870.CrossRefGoogle Scholar
  13. Jenny, H. 1941. Factors of soil formation: A system of quantitative pedology. New York: McGraw-Hill.Google Scholar
  14. Johnson, D.L. 1998. A universal definition of soil. Quaternary International 51–52: 6–7.CrossRefGoogle Scholar
  15. Knicker, H. 2011. Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and survival in soil environments. Quaternary International 243: 251–263.CrossRefGoogle Scholar
  16. Knicker, H., A. Hilscher, F.J. González-Vila, and G. Almendros. 2008. A new conceptual model for the structural properties of char produced during vegetation fires. Organic Geochemistry 39: 935–939.CrossRefGoogle Scholar
  17. Loveland, T.R., B.C. Reed, J.F. Brown, D.O. Ohlen, Z. Zhu, L. Yang, and J.W. Merchant. 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing 21: 1303–1330.CrossRefGoogle Scholar
  18. Mack, M.C., M.S. Bret-Harte, T.N. Hollingsworth, R.R. Jandt, E.A.G. Schuur, G.R. Shaver, and D.L. Verbyla. 2011. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475: 489–492.CrossRefGoogle Scholar
  19. Navarro-González, R., F.A. Rainey, P. Molina, D.R. Bagaley, B.J. Hollen, J. de la Rosa, A.M. Small, R.C. Quinn, et al. 2003. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302: 1018–1021.CrossRefGoogle Scholar
  20. Neary, D.G., K.C. Ryan, and L.F. DeBano, ed. 2005. Wildland fire in ecosystems: Effects of fire on soil and water. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, General Technical Report RMRS-GTR-42-volume 4, Ogden, UT, 250 pp.Google Scholar
  21. Pausas, J.G., and J.E. Keeley. 2009. A burning story: The role of fire in the history of life. BioScience 59: 593–601.CrossRefGoogle Scholar
  22. Prentice, I.C. 2010. The burning issue. Science 330: 1636–1637.CrossRefGoogle Scholar
  23. Robin, V., B. Talon, and O. Nelle. 2013. Pedoanthracological contribution to forest naturalness assessment. Quaternary International 289: 5–15.CrossRefGoogle Scholar
  24. Schmidt, M.W.I., and A.G. Noack. 2000. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles 14: 777–793.CrossRefGoogle Scholar
  25. Shakesby, R.A. 2011. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Science Reviews 105: 71–100.CrossRefGoogle Scholar
  26. Shakesby, R.A., and S.H. Doerr. 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews 74: 269–307.CrossRefGoogle Scholar
  27. Shanhun, F.L., P.C. Almond, T.J. Clough, and C.M.S. Smith. 2012. Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biology & Biochemistry 53: 99–111.CrossRefGoogle Scholar
  28. Tansey, K., J.M. Grégoire, P. Defourny, R. Leigh, J.F. Pekel, E. van Bogaert, and E. Bartholomé. 2008. A new, global, multi-annual (2000–2007) burnt area product at 1 km resolution. Geophysical Research Letters 35: art. No. L01401.Google Scholar
  29. Titiz, B., and R.L. Sanford Jr. 2007. Soil charcoal in old-growth rain forests from sea level to the continental divide. Biotropica 39: 673–682.CrossRefGoogle Scholar
  30. Ugolini, F.C., and J.G. Bockheim. 2008. Antarctic soils and soil formation in a changing environment: A review. Geoderma 144: 1–8.CrossRefGoogle Scholar
  31. Ulery, A.L., R.C. Graham, and L.H. Bowen. 1996. Forest fire effects on soil phyllosilicates in California. Soil Science Society of America Journal 60: 309–315.CrossRefGoogle Scholar
  32. Wardle, D.A., M.-C. Nilsson, and O. Zackrisson. 2008. Fire-derived charcoal causes loss of forest humus. Science 320: 629.CrossRefGoogle Scholar
  33. Yusiharni, E., and R.J. Gilkes. 2012. Changes in the mineralogy and chemistry of a lateritic soil due to a bushfire at Wundowie, Darling Range, Western Australia. Geoderma 191: 140–150.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente (DISPAA)Università degli Studi di FirenzeFlorenceItaly

Personalised recommendations