Skip to main content

Advertisement

Log in

Modeling Past and Future Acidification of Swedish Lakes

  • Report
  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Decades of acid deposition have caused acidification of lakes in Sweden. Here we use data for 3000 lakes to run the acidification model MAGIC and estimate historical and future acidification. The results indicate that beginning in about 1920 a progressively larger number of lakes in Sweden fell into the category of “not naturally acidified” (∆pH > 0.4). The peak in acidification was reached about 1985; since then many lakes have recovered in response to lower levels of acid deposition. Further recovery from acidification will occur by the year 2030 given implementation of agreed legislation for emissions of sulphur (S) and nitrogen (N) in Europe. But the number of catchments with soils being depleted in base cations will increase slightly. MAGIC-reconstructed history of acidification of lakes in Sweden agrees well with information on fish populations. Future acidification of Swedish lakes can be influenced by climate change as well as changes in forest harvest practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aber, J.D., K.J. Nadelhoffer, P. Steudler, and J. Melillo. 1989. Nitrogen saturation in northern forest ecosystems. BioScience 39: 378–386.

    Article  Google Scholar 

  • Aherne, J., M. Posch, M. Forsius, J. Vuorenmaa, P. Tamminen, M. Holmberg, and M. Johansson. 2008. Modelling the hydro-geochemistry of acid-sensitive catchments in Finland under atmospheric deposition and biomass harvesting scenarios. Biogeochemistry 88: 233–256.

    Article  CAS  Google Scholar 

  • Aherne, J., M. Posch, M. Forsius, A. Lehtonen, and K. Härkönen. 2011. Impacts of forest biomass removal on soil nutrient status under climate change: A catchment-based modelling study for Finland. Biogeochemistry 107: 471–488.

    Article  Google Scholar 

  • Akselsson, C., T. Zetterberg, S. Belyazid, O. Westling, S. Hellsten, F. Moldan, and V. Kronnäs. 2007. Bara naturlig försurning. Bilaga 8. Underlagsrapport: Skogsbrukets försurningsbidrag. Bara naturlig försurning. Bilagor till Naturvårdsverkets rapport nr 5766. Naturvårdsverket, Stockholm. (in Swedish).

  • Akselsson, C., O. Westling, H. Sverdrup, J. Holmqvist, G. Thelin, and E. Uggla. 2006. Impact of harvest intensity on long-term base cation budgets in Swedish forest soils. Water, Air, & Soil Pollution: Focus 7: 201–210.

    Google Scholar 

  • Almer, B., W. Dickson, C. Ekström, E. Hornström, and U. Miller. 1974. Effects of acidification of Swedish lakes. AMBIO 3: 30–36.

    Google Scholar 

  • Baker, J.P., and C.L. Schofield. 1980. Aluminium toxicity to fish as related to acid precipitation and Adirondack surface water quality. In Ecological impact of acid precipitation, ed. D. Drabløs, and A. Tollan, 292–293. Ås, Norway: SNSF-project.

  • Bulger, A.J., L. Lien, B.J. Cosby, and A. Henriksen. 1993. Brown trout (Salmo trutta) status and chemistry from the Norwegian thousand lake survey: Statistical analysis. Canadian Journal of Fisheries and Aquatic Sciences 50: 575–585.

    Article  CAS  Google Scholar 

  • Cosby, B.J., G.M. Hornberger, J.N. Galloway, and R.F. Wright. 1985a. Modelling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resources Research 21: 51–63.

    Article  CAS  Google Scholar 

  • Cosby, B.J., R.F. Wright, G.M. Hornberger, and J.N. Galloway. 1985b. Modelling the effects of acid deposition: Estimation of long term water quality responses in a small forested catchment. Water Resources Research 21: 1591–1601.

    Article  CAS  Google Scholar 

  • Cosby, B.J., R.C. Ferrier, A. Jenkins, and R.F. Wright. 2001. Modelling the effects of acid deposition: Refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences 5: 499–518.

    Article  Google Scholar 

  • Fölster, J., C. Andren, K. Bishop, I. Buffam, N. Cory, W. Goedkoop, K. Holmgren, R. Johnson, H. Laudon, and A. Wilander. 2007. A novel environmental quality criterion for acidification in Swedish lakes—An application of studies on the relationship between biota and water chemistry. Water, Air, & Soil Pollution: Focus 7: 331–338.

    Article  Google Scholar 

  • Forsius, M., F. Moldan, T. Larssen, M. Posch, J. Aherne, E. Lund, R.F. Wright, and B.J. Cosby. National-scale dynamic model applications for Nordic countries, Chapter 17. In Critical loads for nitrogen, acidity and metals for terrestrial and aquatic ecosystems, ed. W. de Vries and J.-P. Hettelingh. Berlin: Springer (in preparation).

  • Henriksen, A., and M. Posch. 2001. Steady-state models for calculating critical loads of acidity for surface waters. Water, Air, & Soil Pollution: Focus 1: 375–398.

    Article  CAS  Google Scholar 

  • Hesthagen, T., P. Fiske, and B.L. Skjelkvale. 2008. Critical limits for acid neutralizing capacity of brown trout (Salmo trutta) in Norwegian lakes differing in organic carbon concentrations. Aquatic Ecology 42: 307–316.

    Article  CAS  Google Scholar 

  • Holmgren, K., and I. Buffam. 2005. Critical values of different acidity indices—As shown by fish communities in Swedish lakes. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 29: 654–660.

    CAS  Google Scholar 

  • Hruška, J., S. Kohler, H. Laudon, and K. Bishop. 2003. Is a universal model of organic acidity possible: Comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. Environmental Science and Technology 37: 1726–1730.

    Article  Google Scholar 

  • Larssen, T., B.J. Cosby, E. Lund, and R.F. Wright. 2010. Modeling future acidification and fish populations in Norwegian surface waters. Environmental Science and Technology 44: 5345–5351.

    Article  CAS  Google Scholar 

  • Lien, L., G.G. Raddum, A. Fjellheim, and A. Henriksen. 1996. A critical limit for acid neutralizing capacity in Norwegian surface waters, based on new analyses of fish and invertebrate responses. Science of the Total Environment 177: 173–193.

    Article  CAS  Google Scholar 

  • Lydersen, E., T. Larssen, and E. Fjeld. 2004. The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes. Science of the Total Environment 362: 63–69.

    Article  Google Scholar 

  • Moldan, F., B.J. Cosby, and R.F. Wright. 2009. Modelling the role of nitrogen in acidification of Swedish lakes: Future scenarios of acid deposition, climate change and forestry practices. Report B1888. IVL Swedish Environmental Research Institute Ltd., Gothenburg, Sweden.

  • Moldan, F., and R.F. Wright. 2011. Nitrogen leaching and acidification during 19 years of NH4NO3 additions to a coniferous-forested catchment at Gårdsjön, Sweden (NITREX). Environmental Pollution 159: 431–440.

    Article  CAS  Google Scholar 

  • Moldan, F., V. Kronnäs, A. Wilander, E. Karltun, and B.J. Cosby. 2004. Modelling acidification and recovery of Swedish lakes. Water, Air, & Soil Pollution: Focus 4: 139–160.

    Article  CAS  Google Scholar 

  • Schindler, D.W. 1988. Effects of acid rain on freshwater ecosystems. Science 239: 149–157.

    Article  CAS  Google Scholar 

  • Schöpp, W., M. Posch, S. Mylona, and M. Johansson. 2003. Long-term development of acid deposition (1880–2030) in sensitive freshwater regions in Europe. Hydrology and Earth System Sciences 7: 436–446.

    Article  Google Scholar 

  • Skjelkvåle, B.L., J. Mannio, A. Wilander, and T. Andersen. 2001. Recovery from acidification of lakes in Finland, Norway and Sweden 1990–1999. Hydrology and Earth System Sciences 5: 327–338.

    Article  Google Scholar 

  • Stendahl, J. 2007. Bilaga 2. Underlagsrapport: Utvärdering av miljötillståndet och trender i skogsmarken. Bara Naturlig Försurning. Bilagor till Naturvårdsverkets rapport nr 5766. Naturvårdsverket, Stockholm (in Swedish).

  • Svarén, A. 1996. Jordmånsbildning och markkemisk övervakning i fjällområdet – en pilotstudie. Examensarbete 1995/96, Institutionen för skoglig marklära SLU, Uppsala. 48 pp.

  • Tamm, C.O. 1991. Nitrogen in terrestrial ecosystems. Berlin: Springer.

    Book  Google Scholar 

  • Tammi, J., M. Appelberg, U. Beier, T. Hesthagen, A. Lappalainen, and M. Rask. 2003. Fish status survey of Nordic lakes: Effects of acidification, eutrophication and stocking activity on present fish species composition. AMBIO 32: 98–105.

    Google Scholar 

  • UNECE. 2012. Convention on Long-range Transboundary Air Pollution http://www.unece.org/env/lrtap/.

  • Wilander, A., and J. Fölster. 2007. Sjöinventeringen 2005. En synoptisk vattenkemisk undersökning av Sveriges sjöar. Rapport 2007:16. Institutionen för miljöanalys, Sveriges Lantbruksuniversitet, Uppsala. (in Swedish, English summary).

  • Wright, R.F., and N. van Breemen. 1995. The NITREX project: An introduction. Forest Ecology and Management 71: 1–5.

    Article  Google Scholar 

  • Wright, R.F., T. Larssen, L. Camarero, B.J. Cosby, R.C. Ferrier, R.C. Helliwell, M. Forsius, A. Jenkins, et al. 2005. Recovery of acidified European surface waters. Environmental Science and Technology 39: 64A–72A.

    Google Scholar 

  • Wright, R.F., J. Aherne, K. Bishop, L. Camarero, B.J. Cosby, M. Erlandsson, C.D. Evans, M. Forsius, et al. 2006. Modelling the effect of climate change on recovery of acidified freshwaters: Relative sensitivity of individual processes in the MAGIC model. Science of the Total Environment 365: 154–166.

    Google Scholar 

Download references

Acknowledgments

This work is based on re-calibration of MAGIC to Swedish lakes for revision of the “MAGIC-bibliotek” with contribution from Climate Change and Environmental Objectives (CLEO) program, both financed by the Swedish Environmental Protection Agency. We thank Jens Fölster and colleagues at SLU for help with the data for specific runoff, land use, lake chemistry and soil chemistry. We thank Maximilian Posch of the Coordination Centre for Effects (CCE) for assistance with deposition data. We thank Karin Hansen, IVL, for working up the estimates of past, present, and future forest harvest practices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Moldan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldan, F., Cosby, B.J. & Wright, R.F. Modeling Past and Future Acidification of Swedish Lakes. AMBIO 42, 577–586 (2013). https://doi.org/10.1007/s13280-012-0360-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0360-8

Keywords

Navigation